We show that the well-known relationship between temperature and thermal radiation can be decoupled in a fully passive and reversible way using the phase transition of samarium nickelate. Our sample features temperature-independent thermally emitted power in the long-wave infrared from 90 to 120 °C, making it promising for camouflage applications. 
                        more » 
                        « less   
                    
                            
                            Temperature-independent thermal radiation
                        
                    
    
            Thermal emission is the process by which all objects at nonzero temperatures emit light and is well described by the Planck, Kirchhoff, and Stefan–Boltzmann laws. For most solids, the thermally emitted power increases monotonically with temperature in a one-to-one relationship that enables applications such as infrared imaging and noncontact thermometry. Here, we demonstrated ultrathin thermal emitters that violate this one-to-one relationship via the use of samarium nickel oxide (SmNiO3), a strongly correlated quantum material that undergoes a fully reversible, temperature-driven solid-state phase transition. The smooth and hysteresis-free nature of this unique insulator-to-metal phase transition enabled us to engineer the temperature dependence of emissivity to precisely cancel out the intrinsic blackbody profile described by the Stefan–Boltzmann law, for both heating and cooling. Our design results in temperature-independent thermally emitted power within the long-wave atmospheric transparency window (wavelengths of 8 to 14 µm), across a broad temperature range of ∼30 °C, centered around ∼120 °C. The ability to decouple temperature and thermal emission opens a gateway for controlling the visibility of objects to infrared cameras and, more broadly, opportunities for quantum materials in controlling heat transfer. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1750341
- PAR ID:
- 10127688
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 52
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 26402-26406
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Buttazzo, G.; Casas, E.; de Teresa, L.; Glowinski, R.; Leugering, G.; Trélat, E.; Zhang, X. (Ed.)When the temperature of a trapped Bose gas is below the Bose-Einstein transition temperature and above absolute zero, the gas is composed of two distinct components: the Bose-Einstein condensate and the cloud of thermal excitations. The dynamics of the excitations can be described by quantum Boltzmann models. We establish a connection between quantum Boltzmann models and chemical reaction networks. We prove that the discrete differential equations for these quantum Boltzmann models converge to an equilibrium point. Moreover, this point is unique for all initial conditions that satisfy the same conservation laws. In the proof, we then employ a toric dynamical system approach, similar to the one used to prove the global attractor conjecture, to study the convergence to equilibrium of quantum kinetic equations.more » « less
- 
            Thermochromic vanadium dioxide thin films have attracted much attention recently for constructing variable-emittance coatings upon their insulator-metal phase transition for dynamic thermal control. However, fabrication of high-quality vanadium dioxide thin films in a cost-effective way is still a challenge. In addition, the phase transition temperature of vanadium dioxide is around 68 °C, which is higher than most of terrestrial and extraterrestrial applications. In this study, we report the fabrication and characterization of tungsten-doped vanadium dioxide thin films with lowered phase transition temperatures via co-sputtering, furnace oxidation, and thermal annealing processes for wider application needs. Doping is achieved by co-sputtering of tungsten and vanadium targets while the doping level is varied by carefully controlling the sputtering power for tungsten. Doped thin film samples of 30 nm thick with different tungsten atomic concentrations are prepared by co-sputtering onto undoped silicon wafers. Optimal oxidation time of 4 h is determined to reach full oxidation in an oxygen-rich furnace environment at 300 °C. A systematic thermal annealing study is carried out to find the optimal annealing temperature and time. By using an optical cryostat coupled to an infrared spectrometer, the temperature-dependent infrared transmittance of fully annealed tungsten-doped vanadium dioxide thin films is measured in a wide temperature range from −60 to 100 °C. The phase transition temperature is found to decrease at 24.5 °C per at. % of tungsten doping, and the thermal hysteresis between heating and cooling shrinks at 5.5 °C per at. % from the fabricated vanadium dioxide thin films with tungsten doping up to 4.1 at. %.more » « less
- 
            Metasurfaces consisting of an array of planar sub-wavelength structures have shown great potentials in controlling thermal infrared radiation, including intensity, coherence, and polarization. These capabilities together with the two-dimensional nature make thermal metasurfaces an ultracompact multifunctional platform for infrared light manipulation. Integrating the functionalities, such as amplitude, phase (spectrum and directionality), and polarization, on a single metasurface offers fascinating device responses. However, it remains a significant challenge to concurrently optimize the optical, electrical, and thermal responses of a thermal metasurface in a small footprint. In this work, we develop a center-contacted electrode line design for a thermal infrared metasurface based on a gold nanorod array, which allows local Joule heating to electrically excite the emission without undermining the localized surface plasmonic resonance. The narrowband emission of thermal metasurfaces and their robustness against temperature nonuniformity demonstrated in this work have important implications for the applications in infrared imaging, sensing, and energy harvesting.more » « less
- 
            Abstract Efficient broadband near‐infrared (NIR) emitting materials with an emission peak centered above 830 nm are crucial for smart NIR spectroscopy‐based technologies. However, the development of these materials remains a significant challenge. Herein, a series of design rules rooted in computational methods and empirical crystal‐chemical analysis is applied to identify a new Cr3+‐substituted phosphor. The compound GaTaO4:Cr3+emerged from this study is based on the material's high structural rigidity, suitable electronic environment, and relatively weak electron–phonon coupling. Irradiating this new phosphor with 460 nm blue light generates a broadband NIR emission (λem,max = 840 nm) covering the 700–1100 nm region of the electromagnetic spectrum with a full width at half maximum of 140 nm. The phase has a high internal quantum yield of 91% and excellent thermal stability, maintaining 85% of the room temperature emission intensity at 100 °C. Fabricating a phosphor‐converted light‐emitting diode device shows that the new compound generates an intense NIR emission (178 mW at 500 mA) with photoelectric efficiency of 6%. This work not only provides a new material that has the potential for next‐generation high‐power NIR applications but also highlights a set of design rules capable of developing highly efficient long‐wavelength broadband NIR materials.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
