skip to main content


Title: Temperature-independent thermal radiation

Thermal emission is the process by which all objects at nonzero temperatures emit light and is well described by the Planck, Kirchhoff, and Stefan–Boltzmann laws. For most solids, the thermally emitted power increases monotonically with temperature in a one-to-one relationship that enables applications such as infrared imaging and noncontact thermometry. Here, we demonstrated ultrathin thermal emitters that violate this one-to-one relationship via the use of samarium nickel oxide (SmNiO3), a strongly correlated quantum material that undergoes a fully reversible, temperature-driven solid-state phase transition. The smooth and hysteresis-free nature of this unique insulator-to-metal phase transition enabled us to engineer the temperature dependence of emissivity to precisely cancel out the intrinsic blackbody profile described by the Stefan–Boltzmann law, for both heating and cooling. Our design results in temperature-independent thermally emitted power within the long-wave atmospheric transparency window (wavelengths of 8 to 14 µm), across a broad temperature range of ∼30 °C, centered around ∼120 °C. The ability to decouple temperature and thermal emission opens a gateway for controlling the visibility of objects to infrared cameras and, more broadly, opportunities for quantum materials in controlling heat transfer.

 
more » « less
Award ID(s):
1750341
PAR ID:
10127688
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
52
ISSN:
0027-8424
Page Range / eLocation ID:
p. 26402-26406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that the well-known relationship between temperature and thermal radiation can be decoupled in a fully passive and reversible way using the phase transition of samarium nickelate. Our sample features temperature-independent thermally emitted power in the long-wave infrared from 90 to 120 °C, making it promising for camouflage applications. 
    more » « less
  2. Abstract

    Thermal radiation from a black body increases with the fourth power of absolute temperature (T4), an effect known as the Stefan–Boltzmann law. Typical materials radiate heat at a portion of this limit, where the portion, called integrated emissivity (εint), is insensitive to temperature (|dεint/dT| ≈ 10−4°C–1). The resultant radiance bound by theT4law limits the ability to regulate radiative heat. Here, an unusual material platform is shown in which εintcan be engineered to decrease in an arbitrary manner near room temperature (|dεint/dT| ≈ 8 × 10−3°C–1), enabling unprecedented manipulation of infrared radiation. As an example, εintis programmed to vary with temperature as the inverse ofT4, precisely counteracting theT4dependence; hence, thermal radiance from the surface becomes temperature‐independent, allowing the fabrication of flexible and power‐free infrared camouflage with unique advantage in performance stability. The structure is based on thin films of tungsten‐doped vanadium dioxide where the tungsten fraction is judiciously graded across a thickness less than the skin depth of electromagnetic screening.

     
    more » « less
  3. Buttazzo, G. ; Casas, E. ; de Teresa, L. ; Glowinski, R. ; Leugering, G. ; Trélat, E. ; Zhang, X. (Ed.)
    When the temperature of a trapped Bose gas is below the Bose-Einstein transition temperature and above absolute zero, the gas is composed of two distinct components: the Bose-Einstein condensate and the cloud of thermal excitations. The dynamics of the excitations can be described by quantum Boltzmann models. We establish a connection between quantum Boltzmann models and chemical reaction networks. We prove that the discrete differential equations for these quantum Boltzmann models converge to an equilibrium point. Moreover, this point is unique for all initial conditions that satisfy the same conservation laws. In the proof, we then employ a toric dynamical system approach, similar to the one used to prove the global attractor conjecture, to study the convergence to equilibrium of quantum kinetic equations. 
    more » « less
  4. Abstract

    Integrated nanophotonics is an emerging research direction that has attracted great interests for technologies ranging from classical to quantum computing. One of the key-components in the development of nanophotonic circuits is the phase-change unit that undergoes a solid-state phase transformation upon thermal excitation. The quaternary alloy, Ge2Sb2Se4Te, is one of the most promising material candidates for application in photonic circuits due to its broadband transparency and large optical contrast in the infrared spectrum. Here, we investigate the thermal properties of Ge2Sb2Se4Te and show that upon substituting tellurium with selenium, the thermal transport transitions from an electron dominated to a phonon dominated regime. By implementing an ultrafast mid-infrared pump-probe spectroscopy technique that allows for direct monitoring of electronic and vibrational energy carrier lifetimes in these materials, we find that this reduction in thermal conductivity is a result of a drastic change in electronic lifetimes of Ge2Sb2Se4Te, leading to a transition from an electron-dominated to a phonon-dominated thermal transport mechanism upon selenium substitution. In addition to thermal conductivity measurements, we provide an extensive study on the thermophysical properties of Ge2Sb2Se4Te thin films such as thermal boundary conductance, specific heat, and sound speed from room temperature to 400 °C across varying thicknesses.

     
    more » « less
  5. Metasurfaces consisting of an array of planar sub-wavelength structures have shown great potentials in controlling thermal infrared radiation, including intensity, coherence, and polarization. These capabilities together with the two-dimensional nature make thermal metasurfaces an ultracompact multifunctional platform for infrared light manipulation. Integrating the functionalities, such as amplitude, phase (spectrum and directionality), and polarization, on a single metasurface offers fascinating device responses. However, it remains a significant challenge to concurrently optimize the optical, electrical, and thermal responses of a thermal metasurface in a small footprint. In this work, we develop a center-contacted electrode line design for a thermal infrared metasurface based on a gold nanorod array, which allows local Joule heating to electrically excite the emission without undermining the localized surface plasmonic resonance. The narrowband emission of thermal metasurfaces and their robustness against temperature nonuniformity demonstrated in this work have important implications for the applications in infrared imaging, sensing, and energy harvesting.

     
    more » « less