skip to main content


Title: Examining the ecological role of jellyfish in the Eastern Bering Sea
Abstract

Within the Eastern Bering Sea, the jellyfish Chrysaora melanaster has fluctuated widely over recent decades. We examined the role of C. melanaster as an ecosystem-structuring agent via application of ecosystem models representing inner-, mid-, and outer-shelf regions of comparable areal coverage. Chrysaora melanaster utilize 1% of total mid-shelf consumer production, or 1/4th the energy required by forage fish (capelin Mallotus villosus, Pacific herring Clupea pallasii, age-0 Pacific cod Gadus macrocephalus, age-0 walleye pollock Gadus chalcogrammus). Model simulations show the impacts of C. melanaster are broadly distributed across consumer groups with increasingly negative impacts with higher jellyfish biomass. Age-0 pollock represent the greater part of the forage fish biomass, and observed pollock biomass during low jellyfish years (2004–2007) was significantly greater than during high jellyfish years (2009–2014). However, sensitivity among consumer groups to observed jellyfish variability is small, within 5% of baseline (2004–2015) conditions. Estimates using similar models for the Coastal Gulf of Alaska (CGoA) and Northern California Current (NCC) suggest large differences in the role of scyphozoans among northern Pacific shelf ecosystems. Only 0.1% of total summer consumer production is required to support CGoA Chrysaora, while the coastal NCC population uses 19%.

 
more » « less
NSF-PAR ID:
10127730
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ICES Journal of Marine Science
ISSN:
1054-3139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem. 
    more » « less
  2. Abstract

    Recent summer surveys of the northeastern Chukchi Sea found pelagic fishes were dominated by large numbers of age-0 Arctic cod (Boreogadus saida, Gadidae) and walleye pollock (Gadus chalcogrammus, Gadidae), while adult fishes were comparatively scarce. The source and fate of these young fishes remain unclear, as sampling in this region is impeded by seasonal ice cover much of the year. Seafloor-mounted echosounders were deployed at three locations in the northeastern Chukchi Sea from 2017 to 2019 to determine the movement and seasonal variability of these age-0 gadids. These observations indicated that the abundance of pelagic fishes and community composition on the Chukchi Sea shelf were highly variable on seasonal time scales, with few fish present in winter. Tracking indicated that fish movements were strongly correlated with local currents. Fishes were primarily displaced to the northeast in summer and fall, with periodic reversals towards the southwest driven by changes in regional wind patterns. The flux of fishes past the moorings indicated that the prevailing northward currents transport a large proportion of the age-0 pelagic fishes present on the Chukchi shelf in summer to the northeast by fall, leading to relatively low abundances of age-1+fishes in this environment.

     
    more » « less
  3. The California Current System (CCS) has experienced large fluctuations in environmental conditions in recent years that have dramatically affected the biological community. Here we synthesize remotely sensed, hydrographic, and biological survey data from throughout the CCS in 2019–2020 to evaluate how recent changes in environmental conditions have affected community dynamics at multiple trophic levels. A marine heatwave formed in the north Pacific in 2019 and reached the second greatest area ever recorded by the end of summer 2020. However, high atmospheric pressure in early 2020 drove relatively strong Ekman-driven coastal upwelling in the northern portion of the CCS and warm temperature anomalies remained far offshore. Upwelling and cooler temperatures in the northern CCS created relatively productive conditions in which the biomass of lipid-rich copepod species increased, adult krill size increased, and several seabird species experienced positive reproductive success. Despite these conditions, the composition of the fish community in the northern CCS remained a mixture of both warm- and cool-water-associated species. In the southern CCS, ocean temperatures remained above average for the seventh consecutive year. Abundances of juvenile fish species associated with productive conditions were relatively low, and the ichthyoplankton community was dominated by a mixture of oceanic warm-water and cosmopolitan species. Seabird species associated with warm water also occurred at greater densities than cool-water species in the southern CCS. The population of northern anchovy, which has been resurgent since 2017, continued to provide an important forage base for piscivorous fishes, offshore colonies of seabirds, and marine mammals throughout the CCS. Coastal upwelling in the north, and a longer-term trend in warming in the south, appeared to be controlling the community to a much greater extent than the marine heatwave itself. 
    more » « less
  4. Abstract

    Climate change is creating phenological mismatches between herbivores and their plant resources throughout the Arctic. While advancing growing seasons and changing arrival times of migratory herbivores can have consequences for herbivores and forage quality, developing mismatches could also influence other traits of plants, such as above‐ and below‐ground biomass and the type of reproduction, that are often not investigated.

    In coastal western Alaska, we conducted a 3‐year factorial experiment that simulated scenarios of phenological mismatch by manipulating the start of the growing season (3 weeks early and ambient) and grazing times (3 weeks early, typical, 3 weeks late, or no‐grazing) of Pacific black brant (Branta bernicla nigricans), to examine how the timing of these events influence a primary goose forage species,Carex subspathacea.

    After 3 years, an advanced growing season compared to a typical growing season increased stem heights, standing dead biomass, and the number of inflorescences. Early season grazing compared to typical season grazing reduced above‐ and below‐ground biomass, stem height, and the number of tillers; while late season grazing increased the number of inflorescences and standing dead biomass. Therefore, an advanced growing season and late grazing had similar directional effects on most plant traits, but a 3‐week delay in grazing had an impact on traits 3–5 times greater than a similarly timed shift in the advancement of spring. In addition, changes in response to treatments for some variables, such as the number of inflorescences, were not measurable until the second year of the experiment, while other variables, such as root productivity and number of tillers, changed the direction of their responses to treatments over time.

    Synthesis. Factors affecting the timing of migration have a larger influence than earlier springs on an important forage species in the breeding and rearing habitats of Pacific black brant. The phenological mismatch prediction for this site of earlier springs and later goose arrival will likely increase above‐ and below‐ground biomass and sexual reproduction of the often‐clonally reproducingC. subspathacea. Finally, the implications of mismatch may be difficult to predict because some variables required successive years of mismatch to respond.

     
    more » « less
  5. Consumer-mediated movement can couple food webs in distinct habitats and facilitate energy flow between them. In New England saltmarshes, mummichogs (Fundulus heteroclitus) connect the vegetated marsh and creek food webs by opportunistically foraging on the invertebrate communities of the marsh surface when access is permitted by tidal flooding and marsh-edge geomorphology. Via their movements, mummichog represent a critical food web node, as they can potentially transport energy from the marsh surface food web to creek food web and exert top-down control on the communities of the vegetated marsh surface. Here, I use gut content analysis, calorimetric analysis, and field surveys to demonstrate that access to the marsh surface (afforded by marsh-edge geomorphology) impacts the trophic relay of marsh production to creek food webs. Fish populations in creeks with greater connectivity had a higher total biomass of terrestrial invertebrates in their guts. However, bomb calorimetry showed no difference in the average caloric content of mummichog individuals from creeks with different creek edge geomorphology. Access also did not impact mummichog distribution across the marsh platform and exhibited no evidence of top-down control on their invertebrate prey. Thus, mummichogs function as initial nodes in the trophic relay, unidirectionally moving energy from the vegetated marsh to the creek food web. Reduced marsh surface access via altered marsh-edge geomorphology results in a 50 % to 66 % reduction in total energy available to aquatic predators via this route. Estuarine systems are intimately connected to coastal and offshore systems via consumer mediated flows of energy; thus, disruptions to the trophic relay from the marsh surface at the tidal creek scale can have far reaching impacts on secondary productivity in multiple disparate systems and must be accounted for in considerations of impacts to future food-web function. 
    more » « less