skip to main content


Title: A model for core formation in dark matter haloes and ultra-diffuse galaxies by outflow episodes
ABSTRACT

We present a simple model for the response of a dissipationless spherical system to an instantaneous mass change at its centre, describing the formation of flat cores in dark matter haloes and ultra-diffuse galaxies (UDGs) from feedback-driven outflow episodes in a specific mass range. This model generalizes an earlier simplified analysis of an isolated shell into a system with continuous density, velocity, and potential profiles. The response is divided into an instantaneous change of potential at constant velocities due to a given mass-loss or mass-gain, followed by energy-conserving relaxation to a new Jeans equilibrium. The halo profile is modelled by a two-parameter function with a variable inner slope and an analytic potential profile, which enables determining the associated kinetic energy at equilibrium. The model is tested against NIHAO cosmological zoom-in simulations, where it successfully predicts the evolution of the inner dark matter profile between successive snapshots in about 75 per cent of the cases, failing mainly in merger situations. This model provides a simple understanding of the formation of dark matter halo cores and UDGs by supernova-driven outflows, and a useful analytic tool for studying such processes.

 
more » « less
NSF-PAR ID:
10127740
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
491
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4523-4542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We analyze circular velocity profiles of seven ultradiffuse galaxies (UDGs) that are isolated and gas-rich. Assuming that the dark matter halos of these UDGs have a Navarro–Frenk–White (NFW) density profile or a Read density profile (which allows for constant-density cores), the inferred halo concentrations are systematically lower than the cosmological median, even as low as −0.6 dex (about 5σaway) in some cases. Alternatively, similar fits can be obtained with a density profile that scales roughly as 1/r2for radii larger than a few kiloparsecs. Both solutions require the radius where the halo circular velocity peaks (Rmax) to be much larger than the median expectation. Surprisingly, we find an overabundance of such large-Rmaxhalos in the IllustrisTNG dark-matter-only simulations compared to the Gaussian expectation. These halos form late and have higher spins compared to median halos of similar masses. The inner densities of the most extreme among these late-forming halos are higher than their NFW counterparts, leading to a ∼1/r2density profile. However, the two well-resolved UDGs in our sample strongly prefer lower dark matter densities in the center than the simulated ones. Comparing to IllustrisTNG hydrodynamical simulations, we also find a tension in getting both low enough circular velocities and high enough halo mass to accommodate the measurements. Our results indicate that the gas-rich UDGs present a significant challenge for galaxy formation models.

     
    more » « less
  2. Abstract

    Globular clusters (GCs) provide valuable insight into the properties of their host galaxies’ dark matter halos. UsingN-body simulations incorporating semianalytic dynamical friction and GC−GC merger prescriptions, we study the evolution of GC radial distributions and mass functions in cuspy and cored dark matter halos. Modeling the dynamics of the GC-rich system in the dwarf galaxy UGC 7369, we find that friction-induced inspiral and subsequent mergers of massive GCs can naturally and robustly explain the mass segregation of the GCs and the existence of a nuclear star cluster (NSC). However, the multiple mergers required to form the NSC only take place when the dark matter halo is cuspy. In a cored halo, stalling of the dynamical friction within the core halts the inspiral of the GCs, and so the GC merger rate falls significantly, precluding the formation of an NSC. We therefore argue that the presence of an NSC requires a cusp in UGC 7369. More generally, we propose that the presence of an NSC and the corresponding alteration of the GC mass function due to mergers may be used as an indicator of a cuspy halo for galaxies in which we expect NSC formation to be merger dominated. These observables represent a simple, powerful complement to other inner halo density profile constraint techniques and should allow for straightforward extension to larger samples.

     
    more » « less
  3. ABSTRACT

    In this paper, we construct the circular velocity curve of the Milky Way out to ∼30 kpc, providing an updated model of the dark matter density profile. We derive precise parallaxes for 120 309 stars with a data-driven model, using APOGEE DR17 spectra combined with GaiaDR3, 2MASS, and WISE photometry. At outer galactic radii up to 30 kpc, we find a significantly faster decline in the circular velocity curve compared to the inner parts. This decline is better fit with a cored Einasto profile with a slope parameter $0.91^{+0.04}_{-0.05}$ than a generalized Navarro–Frenk–White (NFW) profile. The virial mass of the best-fitting dark matter halo profile is only $1.81^{+0.06}_{-0.05}\times 10^{11}$ M⊙, significantly lower than what a generalized NFW profile delivers. We present a study of the potential systematics, affecting mainly large radii. Such a low mass for the Galaxy is driven by the functional forms tested, given that it probes beyond our measurements. It is found to be in tension with mass measurements from globular clusters, dwarf satellites, and streams. Our best-fitting profile also lowers the expected dark matter annihilation signal flux from the galactic centre by more than an order of magnitude, compared to an NFW profile-fit. In future work, we will explore profiles with more flexible functional forms to more fully leverage the circular velocity curve and observationally constrain the properties of the Milky Way’s dark matter halo.

     
    more » « less
  4. ABSTRACT We analyse the cold dark matter density profiles of 54 galaxy haloes simulated with Feedback In Realistic Environments (FIRE)-2 galaxy formation physics, each resolved within $0.5{{\ \rm per\ cent}}$ of the halo virial radius. These haloes contain galaxies with masses that range from ultrafaint dwarfs ($M_\star \simeq 10^{4.5}\, \mathrm{M}_{\odot }$) to the largest spirals ($M_\star \simeq 10^{11}\, \mathrm{M}_{\odot }$) and have density profiles that are both cored and cuspy. We characterize our results using a new, analytic density profile that extends the standard two-parameter Einasto form to allow for a pronounced constant density core in the resolved innermost radius. With one additional core-radius parameter, rc, this three-parameter core-Einasto profile is able to characterize our feedback-impacted dark matter haloes more accurately than other three-parameter profiles proposed in the literature. To enable comparisons with observations, we provide fitting functions for rc and other profile parameters as a function of both M⋆ and M⋆/Mhalo. In agreement with past studies, we find that dark matter core formation is most efficient at the characteristic stellar-to-halo mass ratio M⋆/Mhalo ≃ 5 × 10−3, or $M_{\star } \sim 10^9 \, \mathrm{M}_{\odot }$, with cores that are roughly the size of the galaxy half-light radius, rc ≃ 1−5 kpc. Furthermore, we find no evidence for core formation at radii $\gtrsim 100\ \rm pc$ in galaxies with M⋆/Mhalo < 5 × 10−4 or $M_\star \lesssim 10^6 \, \mathrm{M}_{\odot }$. For Milky Way-size galaxies, baryonic contraction often makes haloes significantly more concentrated and dense at the stellar half-light radius than DMO runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of ≃ 0.5−2 kpc in size. Recent evidence for a ∼2 kpc core in the Milky Way’s dark matter halo is consistent with this expectation. 
    more » « less
  5. ABSTRACT

    We revisit the classical KZ problem – determination of the vertical force and implied total mass density distribution of the Milky Way disc – for a wide range of Galactocentric radius and vertical height using chemically selected thin and thick disc samples based on Apache Point Observatory Galactic Evolution Experiment spectroscopy combined with the Gaia astrometry. We derived the velocity dispersion profiles in Galactic cylindrical coordinates, and solved the Jeans equation for the two samples separately. The result is surprising that the total surface mass density as a function of vertical height as derived for these two chemically distinguished populations is different. The discrepancies are larger in the inner compared to the outer Galaxy, with the density calculated from thick disc being larger, independent of the Galactic radius. Furthermore, while there is an overall good agreement between the total mass density derived for the thick disc population and the standard halo model for vertical heights larger than 1 kpc, close to the mid-plane the mass density observed using the thick disc population is larger than that predicted from the standard halo model. We explore various implications of these discrepancies, and speculate their sources, including problems associated with the assumed density laws, velocity dispersion profiles, and the Galactic rotation curve, potential non-equilibrium of the Galactic disc, or a failure of the Navarro-Frenk-White (NFW) dark matter halo profile for the Milky Way. We conclude that the growing detail in hand on the chemodynamical distributions of Milky Way stars challenges traditional analytical treatments of the KZ problem.

     
    more » « less