skip to main content


Title: Simulated Evolution and Severe Wind Production by the 25–26 June 2015 Nocturnal MCS from PECAN
Abstract

The 25–26 June 2015 nocturnal mesoscale convective system (MCS) from the Plains Elevated Convection at Night (PECAN) field project produced severe winds within an environment that might customarily be associated with elevated convection. This work incorporates both a full-physics real-world simulation and an idealized single-sounding simulation to explore the MCS’s evolution. Initially, the simulated convective systems were elevated, being maintained by wavelike disturbances and lacking surface cold pools. As the systems matured, surface outflows began to appear, particularly where heavy precipitation was occurring, with air in the surface cold pools originating from up to 4–5 km AGL. Via this progression, the MCSs exhibited a degree of self-organization (i.e., structures that are dependent upon an MCS’s particular history). The cold pools eventually became 1.5–3.5 km deep, by which point passive tracers revealed that the convection was at least partly surface based. Soon after becoming surface based, both simulations produced severe surface winds, the strongest of which were associated with embedded low-level mesovortices and their attendant outflow surges and bowing segments. The origin of the simulated mesovortices was likely the downward tilting of system-generated horizontal vorticity (from baroclinity, but also possibly friction) within the simulated MCSs’ outflow, as has been argued in a number of previous studies. Taken altogether, it appears that severe nocturnal MCSs may often resemble their cold pool-driven, surface-based afternoon counterparts.

 
more » « less
NSF-PAR ID:
10127801
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
148
Issue:
1
ISSN:
0027-0644
Page Range / eLocation ID:
p. 183-209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Plains Elevated Convection at Night (PECAN) field project was designed to explain the evolution and structures of nocturnal mesoscale convective systems (MCSs) and relate them to specific mechanisms and environmental ingredients. The present work examines four of the strongest and best-organized PECAN cases, each numerically simulated at two different levels of complexity. The suite of simulations enables a longitudinal look at how nocturnal MCSs resemble (or differ from) more commonly studied diurnal MCSs. All of the simulations produce at least some surface outflow (“cold pools”), with stronger outflows occurring in environments with more CAPE and weaker near-ground stability. As these surface outflows emerge, the lifting of near-ground air occurs, causing each simulated nocturnal MCS to ultimately become “surface-based.” The end result in each simulation is a quasi-linear convective system (QLCS) that is most intense toward the downshear flank of its cold pool, with the classical appearance of many afternoon squall lines. This pathway of evolution occurs both in fully heterogeneous real-world-like simulations and horizontally homogeneous idealized simulations. One of the studied cases also exhibits a back-building “rearward off-boundary development” stage, and this more complex behavior is also well simulated in both model configurations. As a group, the simulations imply that a wide range of nocturnal MCS behaviors may be self-organized (i.e., not reliant on larger-scale features external to the convection). 
    more » « less
  2. Nocturnal mesoscale convective systems (MCSs) frequently develop over the Great Plains in the presence of a nocturnal low-level jet (LLJ), which contributes to convective maintenance by providing a source of instability, convergence, and low-level vertical wind shear. Although these nocturnal MCSs often dissipate during the morning, many persist into the following afternoon despite the cessation of the LLJ with the onset of solar heating. The environmental factors enabling the postsunrise persistence of nocturnal convection are currently not well understood. A thorough investigation into the processes supporting the longevity and daytime persistence of an MCS was conducted using routine observations, RAP analyses, and a WRF-ARW simulation. Elevated nocturnal convection developed in response to enhanced frontogenesis, which quickly grew upscale into a severe quasi-linear convective system (QLCS). The western portion of this QLCS reorganized into a bow echo with a pronounced cold pool and ultimately an organized leading-line, trailing-stratiform MCS as it moved into an increasingly unstable environment. Differential advection resulting from the interaction of the nocturnal LLJ with the topography of west Texas established considerable heterogeneity in moisture, CAPE, and CIN, which influenced the structure and evolution of the MCS. An inland-advected moisture plume significantly increased near-surface CAPE during the nighttime over central Texas, while the environment over southeastern Texas abruptly destabilized following the commencement of surface heating and downward moisture transport. The unique topography of the southern plains and the close proximity to the Gulf of Mexico provided an environment conducive to the postsunrise persistence of the organized MCS.

     
    more » « less
  3. null (Ed.)
    Abstract In a mesoscale convective system (MCS), convection that redevelops over (i.e., back-builds), and/or repeatedly passes over (i.e., trains) a region for an extended period of time can contribute to extreme rainfall and flash flooding. Past studies have indicated that both mesoscale ascent and lifting of the inflow layer by a cold pool or bore are important when this back-building/training convection is displaced from the leading line [sometimes called rearward off-boundary development (ROD)]. However, Plains Elevated Convection At Night (PECAN) field campaign observations suggest that the stability of the nocturnal boundary layer is highly variable and some MCSs with ROD have only a weak surface cold pool. Numerical simulations presented in this study suggest that in an environment with strong boundary layer stability, ROD can be supported by mechanisms other than those mentioned above. Simulations were initialized using a sounding from ahead of a PECAN MCS with a strong stable layer and ROD, and the three-dimensional simulation produced an MCS similar to that observed despite the homogeneous initial conditions. Some of the findings presented herein challenge existing understanding of nocturnal MCSs, and especially how downdrafts interact with a stable boundary layer. Notably, downdrafts can reach the surface, and different regions of the MCS may have different propagation mechanisms and different relevant inflow layers. Unlike previous studies of ROD, parcel lifting may be supported by an intrusion (an elevated layer of downdraft air) modified by the three-dimensional vertical wind shear. 
    more » « less
  4. Abstract

    This case study analyzes a nocturnal mesoscale convective system (MCS) that was observed on 25–26 June 2015 in northeastern Kansas during the Plains Elevated Convection At Night (PECAN) project. Over the course of the observational period, a broken line of elevated nocturnal convective cells initiated around 0230 UTC on the cool side of a stationary front and subsequently merged to form a quasi-linear MCS that later developed strong, surface-based outflow and a trailing stratiform region. This study combines radar observations with mobile and fixed mesonet and sounding data taken during PECAN to analyze the kinematics and thermodynamics of the MCS from 0300 to 0630 UTC. This study is unique in that 38 consecutive multi-Doppler wind analyses are examined over the 3.5 h observation period, facilitating a long-duration analysis of the kinematic evolution of the nocturnal MCS. Radar analyses reveal that the initial convective cells and linear MCS are elevated and sustained by an elevated residual layer formed via weak ascent over the stationary front. During upscale growth, individual convective cells develop storm-scale cold pools due to pockets of descending rear-to-front flow that are measured by mobile mesonets. By 0500 UTC, kinematic analysis and mesonet observations show that the MCS has a surface-based cold pool and that convective line updrafts are ingesting parcels from below the stable layer. In this environment, the elevated system has become surface based since the cold pool lifting is sufficient for surface-based parcels to overcome the CIN associated with the frontal stable layer.

     
    more » « less
  5. Abstract

    This study used radar observations and a high‐resolution numerical simulation to explore the interactions between an mesoscale convective system (MCS), cold pool outflows, and atmospheric bores in a non‐uniform baroclinic environment. The bores were generated by a nocturnal MCS that occurred on 2–3 June 2017 over the southern North China Plain. The goal of this investigation is to determine how the structure of bores varied within this non‐uniform environment and whether and how the bores would maintain the MCS and alter its structure. To the southwest of the MCS, where there was large CAPE and a well‐mixed boundary layer, discrete convection initiation occurred behind a single radar fine line (RFL) maintaining the propagation of the MCS. To the southeast of the MCS, multiple RFLs were found suggesting the generation of an undular bore in an environment containing an intense nocturnal stable boundary layer with dry upper layers and little CAPE. Hydraulic and nonlinear theory were applied to the simulation of the MCS revealing that the differences in the bore evolution depended on both the characteristics of the cold pool and the variations in the ambient environment. Thus, the characteristics of the ambient environment and the associated differences in bore structure impacted the maintenance and organization of the MCS. This study implies the importance of an accurate representation of the low‐level ambient environment and the microphysics and kinematics within the MCS to accurately simulate and forecast cold pools, the generation and evolution of bores, and their impact on nocturnal MCSs.

     
    more » « less