skip to main content

Title: A3COSMOS: the dust attenuation of star-forming galaxies at z = 2.5–4.0 from the COSMOS-ALMA archive

We present an analysis of the dust attenuation of star-forming galaxies at z = 2.5–4.0 through the relationship between the UV spectral slope (β), stellar mass (M*), and the infrared excess (IRX = LIR/LUV) based on far-infrared continuum observations from the Atacama Large Millimeter/sub-millimeter Array (ALMA). Our study exploits the full ALMA archive over the COSMOS field processed by the A3COSMOS team, which includes an unprecedented sample of ∼1500 galaxies at z ∼ 3 as primary or secondary targets in ALMA band 6 or 7 observations with a median continuum sensitivity of 126 $\rm {\mu Jy\, beam}^{-1}$ (1σ). The detection rate is highly mass dependent, decreasing drastically below log (M*/M⊙) = 10.5. The detected galaxies show that the IRX–β relationship of massive (log M*/M⊙ > 10) main-sequence galaxies at z = 2.5–4.0 is consistent with that of local galaxies, while starbursts are generally offset by $\sim 0.5\, {\rm dex}$ to larger IRX values. At the low-mass end, we derive upper limits on the infrared luminosities through stacking of the ALMA data. The combined IRX–M* relation at $\rm {log\, ({\it M}_{\ast }/\mathrm{M}_{\odot })\gt 9}$ exhibits a significantly steeper slope than reported in previous studies at similar redshifts, implying little dust obscuration at log M*/M⊙ < 10. However, our results are consistent with earlier measurements at z ∼ 5.5, indicating a potential redshift evolution between z ∼ 2 and z ∼ 6. Deeper observations targeting low-mass galaxies will be required to confirm this finding.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 4724-4734
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We make use of sensitive (9.3 μ Jy beam −1 rms) 1.2 mm continuum observations from the Atacama Large Millimeter/submillimeter Array (ALMA) Spectroscopic Survey in the Hubble Ultra-Deep Field (ASPECS) large program to probe dust-enshrouded star formation from 1362 Lyman-break galaxies spanning the redshift range z  = 1.5–10 (to ∼7–28 M ⊙ yr −1 at 4 σ over the entire range). We find that the fraction of ALMA-detected galaxies in our z  = 1.5–10 samples increases steeply with stellar mass, with the detection fraction rising from 0% at 10 9.0 M ⊙ to % at >10 10 M ⊙ . Moreover, on stacking all 1253 low-mass (<10 9.25 M ⊙ ) galaxies over the ASPECS footprint, we find a mean continuum flux of −0.1 ± 0.4 μ Jy beam −1 , implying a hard upper limit on the obscured star formation rate of <0.6 M ⊙ yr −1 (4 σ ) in a typical low-mass galaxy. The correlation between the infrared excess (IRX) of UV-selected galaxies ( L IR / L UV ) and the UV-continuum slope is also seen in our ASPECS data and shows consistency with a Calzetti-like relation at > and an SMC-like relation at lower masses. Using stellar mass and β measurements for z  ∼ 2 galaxies over the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we derive a new empirical relation between β and stellar mass and then use this correlation to show that our IRX– β and IRX–stellar mass relations are consistent with each other. We then use these constraints to express the IRX as a bivariate function of β and stellar mass. Finally, we present updated estimates of star formation rate density determinations at z  > 3, leveraging present improvements in the measured IRX and recent probes of ultraluminous far-IR galaxies at z  > 2. 
    more » « less

    We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and ${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $\mu$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $50{{\ \rm per\ cent}}$ solar. To explain the measured dust-corrected luminosity ratios of $\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$ and $\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$ for our sample, ionization parameters log (U) < −2 and electron densities $\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. The analysis of this pilot sample suggests that typical log (M/M⊙) > 9 galaxies at z ∼ 4.5 to have broadly similar ISM properties as their descendants at z ∼ 2 and suggest a strong evolution of ISM properties since the epoch of reionization at z > 6.

    more » « less
  3. ABSTRACT We report the serendipitous discovery of a dust-obscured galaxy observed as part of the Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [C ii] at Early times (ALPINE). While this galaxy is detected both in line and continuum emissions in ALMA Band 7, it is completely dark in the observed optical/near-infrared bands and only shows a significant detection in the UltraVISTA Ks band. We discuss the nature of the observed ALMA line, that is [C ii] at $z$ ∼ 4.6 or high-J CO transitions at $z$ ∼ 2.2. In the first case, we find a [C ii]/FIR luminosity ratio of $\mathrm{log}{(L_{[\mathrm{ C}\, \rm {\small {II}}]}/L_{\mathrm{ FIR}})} \sim -2.5$, consistent with the average value for local star-forming galaxies (SFGs). In the second case instead, the source would lie at larger CO luminosities than those expected for local SFGs and high-z submillimetre galaxies. At both redshifts, we derive the star formation rate (SFR) from the ALMA continuum and the physical parameters of the galaxy, such as the stellar mass (M*), by fitting its spectral energy distribution. Exploiting the results of this work, we believe that our source is a ‘main-sequence’, dusty SFG at $z$ = 4.6 (i.e. [C ii] emitter) with $\mathrm{log(SFR/M_{\odot }\, yr^{-1})}\sim 1.4$ and log(M*/M⊙) ∼ 9.9. As a support to this scenario our galaxy, if at this redshift, lies in a massive protocluster recently discovered at $z$ ∼ 4.57, at only ∼1 proper Mpc from its centre. This work underlines the crucial role of the ALPINE survey in making a census of this class of objects, in order to unveil their contribution to the global SFR density at the end of the Reionization epoch. 
    more » « less
  4. Aims. We aim to quantify the relation between the dust-to-gas mass ratio (DTG) and gas-phase metallicity of z  = 2.1 − 2.5 luminous galaxies and contrast this high-redshift relation against analogous constraints at z  = 0. Methods. We present a sample of ten star-forming main-sequence galaxies in the redshift range 2.1 <  z  < 2.5 with rest-optical emission-line information available from the MOSDEF survey and with ALMA 1.2 millimetre and CO J  = 3 − 2 follow-up observations. The galaxies have stellar masses ranging from 10 10.3 to 10 10.6   M ⊙ and cover a range in star-formation rate from 35 to 145 M ⊙ yr −1 . We calculated the gas-phase oxygen abundance of these galaxies from rest-optical nebular emission lines (8.4 < 12 + log(O/H) < 8.8, corresponding to 0.5−1.25 Z ⊙ ). We estimated the dust and H 2 masses of the galaxies (using a metallicity-dependent CO-to-H 2 conversion factor) from the 1.2 mm and CO J  = 3 − 2 observations, respectively, from which we estimated a DTG. Results. We find that the galaxies in this sample follow the trends already observed between CO line luminosity and dust-continuum luminosity from z  = 0 to z  = 3, extending such trends to fainter galaxies at 2.1 <  z  < 2.5 than observed to date. We find no second-order metallicity dependence in the CO – dust-continuum luminosity relation for the galaxies presented in this work. The DTGs of main-sequence galaxies at 2.1 <  z  < 2.5 are consistent with an increase in the DTG with gas-phase metallicity. The metallicity dependence of the DTG is driven by the metallicity dependence of the CO-to-H 2 conversion factor. Galaxies at z  = 2.1 − 2.5 are furthermore consistent with the DTG-metallicity relation found at z  = 0 (i.e. with no significant evolution), providing relevant constraints for galaxy formation models. These results furthermore imply that the metallicity of galaxies should be taken into account when estimating cold-gas masses from dust-continuum emission, which is especially relevant when studying metal-poor low-mass or high-redshift galaxies. 
    more » « less
  5. The Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [CII] at Early times (ALPINE) targets the [CII] 158 μ m line and the far-infrared continuum in 118 spectroscopically confirmed star-forming galaxies between z  = 4.4 and z  = 5.9. It represents the first large [CII] statistical sample built in this redshift range. We present details regarding the data processing and the construction of the catalogs. We detected 23 of our targets in the continuum. To derive accurate infrared luminosities and obscured star formation rates (SFRs), we measured the conversion factor from the ALMA 158 μ m rest-frame dust continuum luminosity to the total infrared luminosity ( L IR ) after constraining the dust spectral energy distribution by stacking a photometric sample similar to ALPINE in ancillary single-dish far-infrared data. We found that our continuum detections have a median L IR of 4.4 × 10 11 L ⊙ . We also detected 57 additional continuum sources in our ALMA pointings. They are at a lower redshift than the ALPINE targets, with a mean photometric redshift of 2.5 ± 0.2. We measured the 850 μ m number counts between 0.35 and 3.5 mJy, thus improving the current interferometric constraints in this flux density range. We found a slope break in the number counts around 3 mJy with a shallower slope below this value. More than 40% of the cosmic infrared background is emitted by sources brighter than 0.35 mJy. Finally, we detected the [CII] line in 75 of our targets. Their median [CII] luminosity is 4.8 × 10 8 L ⊙ and their median full width at half maximum is 252 km s −1 . After measuring the mean obscured SFR in various [CII] luminosity bins by stacking ALPINE continuum data, we find a good agreement between our data and the local and predicted SFR– L [CII] relations. 
    more » « less