skip to main content

Title: Investigating the spectral age problem with powerful radio galaxies

The ‘spectral age problem’ is our systematic inability to reconcile the maximum cooling time of radiating electrons in the lobes of a radio galaxy with its age as modelled by the dynamical evolution of the lobes. While there are known uncertainties in the models that produce both age estimates, ‘spectral’ ages are commonly underestimated relative to dynamical ages, consequently leading to unreliable estimates of the time-averaged kinetic feedback of a powerful radio galaxy. In this work, we attempt to solve the spectral age problem by observing two cluster-centre powerful radio galaxies; 3C 320 and 3C 444. With high-resolution broad-band Karl G. Jansky Very Large Array observations of the radio sources and deep XMM–Newton and Chandra observations of their hot intracluster media, coupled with the use of an analytic model, we robustly determine their spectral and dynamical ages. After finding self-consistent dynamical models that agree with our observational constraints, and accounting for sub-equipartition magnetic fields, we find that our spectral ages are still underestimated by a factor of two at least. Equipartition magnetic fields will underestimate the spectral age by factors of up to ∼20. The turbulent mixing of electron populations in the radio lobes is likely to be the more » main remaining factor in the spectral age/dynamical age discrepancy, and must be accounted for in the study of large samples of powerful radio galaxies.

« less
 ;  ;  ;  ;  ;  
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 5015-5034
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    Stellar population synthesis (SPS) models are invaluable to study star clusters and galaxies. They provide means to extract stellar masses, stellar ages, star formation histories, chemical enrichment, and dust content of galaxies from their integrated spectral energy distributions, colours, or spectra. As most models, they contain uncertainties that can hamper our ability to model and interpret observed spectra. This work aims at studying a specific source of model uncertainty: the choice of an empirical versus a synthetic stellar spectral library. Empirical libraries suffer from limited coverage of parameter space, while synthetic libraries suffer from modelling inaccuracies. Given our current inability to have both ideal stellar-parameter coverage with ideal stellar spectra, what should one favour: better coverage of the parameters (synthetic library) or better spectra on a star-by-star basis (empirical library)? To study this question, we build a synthetic stellar library mimicking the coverage of an empirical library, and SPS models with different choices of stellar library tailored to these investigations. Through the comparison of model predictions and the spectral fitting of a sample of nearby galaxies, we learned that predicted colours are more affected by the coverage effect than the choice of a synthetic versus empirical library; the effectsmore »on predicted spectral indices are multiple and defy simple conclusions; derived galaxy ages are virtually unaffected by the choice of the library, but are underestimated when SPS models with limited parameter coverage are used; metallicities are robust against limited HRD coverage, but are underestimated when using synthetic libraries.

    « less

    Globular cluster ages provide both an important test of models of globular cluster formation and a powerful method to constrain the assembly history of galaxies. Unfortunately, measuring the ages of unresolved old stellar populations has proven challenging. Here, we present a novel technique that combines optical photometry with metallicity constraints from near-infrared spectroscopy in order to measure ages. After testing the method on globular clusters in the Milky Way and its satellite galaxies, we apply our technique to three massive early-type galaxies using data from the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey. The three SLUGGS galaxies and the Milky Way show dramatically different globular cluster age and metallicity distributions, with NGC 1407 and the Milky Way showing mostly old globular clusters, while NGC 3115 and NGC 3377 show a range of globular ages. This diversity implies different galaxy formation histories and that the globular cluster optical colour–metallicity relation is not universal as is commonly assumed in globular cluster studies. We find a correlation between the median age of the metal-rich globular cluster populations and the age of the field star populations, in line with models where globular cluster formation is a natural outcome of high-intensity star formation.

  3. ABSTRACT Previous studies have revealed a population of galaxies in galaxy clusters with ram pressure stripped (RPS) tails of gas and embedded young stars. We observed 1.4 GHz continuum and H i emission with the Very Large Array in its B-configuration in two fields of the Coma cluster to study the radio properties of RPS galaxies. The best continuum sensitivities in the two fields are 6 and 8 µJy per 4 arcsec beam, respectively, which are 4 and 3 times deeper than those previously published. Radio continuum tails are found in 10 (8 are new) out of 20 RPS galaxies, unambiguously revealing the presence of relativistic electrons and magnetic fields in the stripped tails. Our results also hint that the tail has a steeper spectrum than the galaxy. The 1.4 GHz continuum in the tails is enhanced relative to their H α emission by a factor of ∼7 compared to the main bodies of the RPS galaxies. The 1.4 GHz continuum of the RPS galaxies is also enhanced relative to their infrared emission by a factor of ∼2 compared to star-forming galaxies. The enhancement is likely related to ram pressure and turbulence in the tail. We furthermore present H i detections in three RPS galaxies and uppermore »limits for the other RPS galaxies. The cold gas in D100’s stripped tail is dominated by molecular gas, which is likely a consequence of the high ambient pressure. No evidence of radio emission associated with ultra-diffuse galaxies is found in our data.« less
  4. ABSTRACT We present the first high-resolution 230–470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved have allowed the identification of previously unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyse complex radio sources harboured in the cluster. Two new distinct, narrowly collimated jets are visible in IC 310, consistent with a highly projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behaviour, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection betweenmore »all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head–tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets.« less
  5. MeerKAT’s large number (64) of 13.5 m diameter antennas, spanning 8 km with a densely packed 1 km core, create a powerful instrument for wide-area surveys, with high sensitivity over a wide range of angular scales. The MeerKAT Galaxy Cluster Legacy Survey (MGCLS) is a programme of long-track MeerKAT L -band (900−1670 MHz) observations of 115 galaxy clusters, observed for ∼6−10 h each in full polarisation. The first legacy product data release (DR1), made available with this paper, includes the MeerKAT visibilities, basic image cubes at ∼8″ resolution, and enhanced spectral and polarisation image cubes at ∼8″ and 15″ resolutions. Typical sensitivities for the full-resolution MGCLS image products range from ∼3−5 μJy beam −1 . The basic cubes are full-field and span 2° × 2°. The enhanced products consist of the inner 1.2° × 1.2° field of view, corrected for the primary beam. The survey is fully sensitive to structures up to ∼10′ scales, and the wide bandwidth allows spectral and Faraday rotation mapping. Relatively narrow frequency channels (209 kHz) are also used to provide H  I mapping in windows of 0 <  z  < 0.09 and 0.19 <  z  < 0.48. In this paper, we provide an overview of the survey and the DR1 products, including caveatsmore »for usage. We present some initial results from the survey, both for their intrinsic scientific value and to highlight the capabilities for further exploration with these data. These include a primary-beam-corrected compact source catalogue of ∼626 000 sources for the full survey and an optical and infrared cross-matched catalogue for compact sources in the primary-beam-corrected areas of Abell 209 and Abell S295. We examine dust unbiased star-formation rates as a function of cluster-centric radius in Abell 209, extending out to 3.5 R 200 . We find no dependence of the star-formation rate on distance from the cluster centre, and we observe a small excess of the radio-to-100 μm flux ratio towards the centre of Abell 209 that may reflect a ram pressure enhancement in the denser environment. We detect diffuse cluster radio emission in 62 of the surveyed systems and present a catalogue of the 99 diffuse cluster emission structures, of which 56 are new. These include mini-halos, halos, relics, and other diffuse structures for which no suitable characterisation currently exists. We highlight some of the radio galaxies that challenge current paradigms, such as trident-shaped structures, jets that remain well collimated far beyond their bending radius, and filamentary features linked to radio galaxies that likely illuminate magnetic flux tubes in the intracluster medium. We also present early results from the H  I analysis of four clusters, which show a wide variety of H  I mass distributions that reflect both sensitivity and intrinsic cluster effects, and the serendipitous discovery of a group in the foreground of Abell 3365.« less