skip to main content

Title: Energy-Aware Digital Signatures for Embedded Medical Devices
Authentication is vital for the Internet of Things (IoT) applications involving sensitive data (e.g., medical and financial systems). Digital signatures offer scalable authentication with non-repudiation and public verifiability, which are necessary for auditing and dispute resolution in such IoT applications. However, digital signatures have been shown to be highly costly for low-end IoT devices, especially when embedded devices (e.g., medical implants) must operate without a battery replacement for a long time. We propose an Energy-aware Signature for Embedded Medical devices (ESEM) that achieves near-optimal signer efficiency. ESEM signature generation does not require any costly operations (e.g., elliptic curve (EC) scalar multiplication/addition), but only a small constant-number of pseudo-random function calls, additions, and a single modular multiplication. ESEM has the smallest signature size among its EC-based counterparts with an identical private key size. We achieve this by eliminating the use of the ephemeral public key (i.e, commitment) in Schnorrtype signatures from the signing via a distributed construction at the verifier without interaction with the signer while permitting a constant-size public key. We proved that ESEM is secure (in random oracle model), and fully implemented it on an 8-bit AVR microcontroller that is commonly used in medical devices. Our experiments showed that ESEM achieves 8.4× higher energy efficiency over its closest counterpart while offering a smaller signature and code size. Hence, ESEM can be suitable for deployment on resource-limited embedded devices in IoT. We  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Conference on Communications and Network Security (CNS)
Page Range / eLocation ID:
55 to 63
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Digital signatures are basic cryptographic tools to provide authentication and integrity in the emerging ubiquitous systems in which resource-constrained devices are expected to operate securely and efficiently. However, existing digital signatures might not be fully practical for such resource-constrained devices (e.g., medical implants) that have energy limitations. Some other computationally efficient alternatives (e.g., one-time/multiple-time signatures) may introduce high memory and/or communication overhead due to large private key and signature sizes. In this paper, our contributions are two-fold: First, we develop a new lightweight multiple-time digital signature scheme called Signer Efficient Multiple-time Elliptic Curve Signature (SEMECS), which is suitable for resource-constrained embedded devices. SEMECS achieves optimal signature and private key sizes for an EC-based signature without requiring any EC operation (e.g., EC scalar multiplication or addition) at the signer. We prove SEMECS is secure (in the random oracle model) with a tight security reduction. Second, we fully implemented SEMECS on an 8-bit AVR microprocessor with a comprehensive energy consumption analysis and comparison. Our experiments confirm up to 19× less battery-consumption for SEMECS as compared to its fastest (full-time) counterpart, SchnorrQ, while offering significant performance advantages over its multiple-time counterparts in various fronts. We open-source our implementation for public testing and adoption. 
    more » « less
  2. Efficient authentication is vital for IoT applications with stringent minimum-delay requirements (e.g., energy delivery systems). This requirement becomes even more crucial when the IoT devices are battery-powered, like small aerial drones, and the efficiency of authentication directly translates to more operation time. Although some fast authentication techniques have been proposed, some of them might not fully meet the needs of the emerging delay-aware IoT. In this paper, we propose a new signature scheme called ARIS that pushes the limits of the existing digital signatures, wherein commodity hardware can verify 83,333 signatures per second. ARIS also enables the fastest signature generation along with the lowest energy consumption and end-to-end delay among its counterparts. These significant computational advantages come with a larger storage requirement, which is a favorable trade-off for some critical delay-aware applications. These desirable features are achieved by harnessing message encoding with cover-free families and a special elliptic curve based one-way function. We prove the security of ARIS under the hardness of the elliptic curve discrete logarithm problem in the random oracle model. We provide an open-sourced implementation of ARIS on commodity hardware and an 8-bit AVR microcontroller for public testing and verification. 
    more » « less
  3. A digital signature is an essential cryptographic tool to offer authentication with public verifiability, non-repudiation, and scalability. However, digital signatures often rely on expensive operations that can be highly costly for low-end devices, typically seen in the Internet of Things and Systems (IoTs). These efficiency concerns especially deepen when post-quantum secure digital signatures are considered. Hence, it is of vital importance to devise post-quantum secure digital signatures that are designed with the needs of such constraint IoT systems in mind. In this work, we propose a novel lightweight post-quantum digital signature that respects the processing, memory, and bandwidth limitations of resource-limited IoTs. Our new scheme, called ANT, efficiently transforms a one-time signature to a (polynomially bounded) many-time signature via a distributed public key computation method. This new approach enables a resource-limited signer to compute signatures without any costly lattice operations (e.g., rejection samplings, matrix multiplications, etc.), and only with a low-memory footprint and compact signature sizes. We also developed a variant for ANT with forward-security, which is an extremely costly property to attain via the state-of-the-art postquantum signatures. 
    more » « less
  4. Authentication and integrity are fundamental security services that are critical for any viable system. However, some of the emerging systems (e.g., smart grids, aerial drones) are delay-sensitive, and therefore their safe and reliable operation requires delay-aware authentication mechanisms. Unfortunately, the current state-of-the-art authentication mechanisms either incur heavy computations or lack scalability for such large and distributed systems. Hence, there is a crucial need for digital signature schemes that can satisfy the requirements of delay-aware applications. In this paper, we propose a new digital signature scheme that we refer to as Compact Energy and Delay-aware Authentication (CEDA). In CEDA, signature generation and verification only require a small-constant number of multiplications and Pseudo Random Function (PRF) calls. Therefore, it achieves the lowest end-to-end delay among its counterparts. Our implementation results on an ARM processor and commodity hardware show that CEDA has the most efficient signature generation on both platforms, while offering a fast signature verification. Among its delay-aware counter-parts, CEDA has a smaller private key with a constant-size signature. All these advantages are achieved with the cost of a larger public key. This is a highly favorable trade-0ff for applications wherein the verffier is not memory-limited. We open-sourced our implementation of CEDA to enable its broad testing and adaptation. 
    more » « less
  5. The elliptic curve family of schemes has the lowest computational latency, memory use, energy consumption, and bandwidth requirements, making it the most preferred public key method for adoption into network protocols. Being suitable for embedded devices and applicable for key exchange and authentication, ECC is assuming a prominent position in the field of IoT cryptography. The attractive properties of the relatively new curve Curve448 contribute to its inclusion in the TLS1.3 protocol and pique the interest of academics and engineers aiming at studying and optimizing the schemes. When addressing low-end IoT devices, however, the literature indicates little work on these curves. In this paper, we present an efficient design for both protocols based on Montgomery curve Curve448 and its birationally equivalent Edwards curve Ed448 used for key agreement and digital signature algorithm, specifically the X448 function and the Ed448 DSA, relying on efficient low-level arithmetic operations targeting the ARM-based Cortex-M4 platform. Our design performs point multiplication, the base of the Elliptic Curve Diffie-Hellman (ECDH), in 3,2KCCs, resulting in more than 48% improvement compared to the best previous work based on Curve448, and performs sign and verify, the main operations of the Edwards-curves Digital Signature Algorithm (EdDSA), in 6,038KCCs and 7,404KCCs, showing a speedup of around 11% compared to the counterparts. We present novel modular multiplication and squaring architectures reaching ∼25% and ∼35% faster runtime than the previous best-reported results, respectively, based on Curve448 key exchange counterparts, and ∼13% and ∼25% better latency results than the Ed448-based digital signature counterparts targeting Cortex-M4 platform. 
    more » « less