skip to main content


Title: High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy

Cryogenic electron microscopy (cryo-EM) has become one of the most powerful techniques to reveal the atomic structures and working mechanisms of biological macromolecules. New designs of the cryo-EM grids—aimed at preserving thin, uniform vitrified ice and improving protein adsorption—have been considered a promising approach to achieving higher resolution with the minimal amount of materials and data. Here, we describe a method for preparing graphene cryo-EM grids with up to 99% monolayer graphene coverage that allows for more than 70% grid squares for effective data acquisition with improved image quality and protein density. Using our graphene grids, we have achieved 2.6-Å resolution for streptavidin, with a molecular weight of 52 kDa, from 11,000 particles. Our graphene grids increase the density of examined soluble, membrane, and lipoproteins by at least 5-fold, affording the opportunity for structural investigation of challenging proteins which cannot be produced in large quantity. In addition, our method employs only simple tools that most structural biology laboratories can access. Moreover, this approach supports customized grid designs targeting specific proteins, owing to its broad compatibility with a variety of nanomaterials.

 
more » « less
NSF-PAR ID:
10128655
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
2
ISSN:
0027-8424
Page Range / eLocation ID:
p. 1009-1014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Advances in imagery at atomic and near-atomic resolution, such as cryogenic electron microscopy (cryo-EM), have led to an influx of high resolution images of proteins and other macromolecular structures to data banks worldwide. Producing a protein structure from the discrete voxel grid data of cryo-EM maps involves interpolation into the continuous spatial domain. We present a novel data format called the neural cryo-EM map, which is formed from a set of neural networks that accurately parameterize cryo-EM maps and provide native, spatially continuous data for density and gradient. As a case study of this data format, we create graph-based interpretations of high resolution experimental cryo-EM maps.

    Results

    Normalized cryo-EM map values interpolated using the non-linear neural cryo-EM format are more accurate, consistently scoring less than 0.01 mean absolute error, than a conventional tri-linear interpolation, which scores up to 0.12 mean absolute error. Our graph-based interpretations of 115 experimental cryo-EM maps from 1.15 to 4.0 Å resolution provide high coverage of the underlying amino acid residue locations, while accuracy of nodes is correlated with resolution. The nodes of graphs created from atomic resolution maps (higher than 1.6 Å) provide greater than 99% residue coverage as well as 85% full atomic coverage with a mean of 0.19 Å root mean squared deviation. Other graphs have a mean 84% residue coverage with less specificity of the nodes due to experimental noise and differences of density context at lower resolutions.

    Conclusions

    The fully continuous and differentiable nature of the neural cryo-EM map enables the adaptation of the voxel data to alternative data formats, such as a graph that characterizes the atomic locations of the underlying protein or macromolecular structure. Graphs created from atomic resolution maps are superior in finding atom locations and may serve as input to predictive residue classification and structure segmentation methods. This work may be generalized to transform any 3D grid-based data format into non-linear, continuous, and differentiable format for downstream geometric deep learning applications.

     
    more » « less
  2. Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. A long-standing design approach uses genetic fusion to join protein homo-oligomer subunits via α-helical linkers to form more complex symmetric assemblies, but this method is hampered by linker flexibility and a dearth of geometric solutions. Here, we describe a general computational method for rigidly fusing homo-oligomer and spacer building blocks to generate user-defined architectures that generates far more geometric solutions than previous approaches. The fusion junctions are then optimized using Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric protein assemblies using a set of designed homodimers and repeat protein building blocks. Experimental validation by native mass spectrometry, small-angle X-ray scattering, and negative-stain single-particle electron microscopy confirms the assembly states for 11 designs. Most of these assemblies are constructed from designed ankyrin repeat proteins (DARPins), held in place on one end by α-helical fusion and on the other by a designed homodimer interface, and we explored their use for cryogenic electron microscopy (cryo-EM) structure determination by incorporating DARPin variants selected to bind targets of interest. Although the target resolution was limited by preferred orientation effects and small scaffold size, we found that the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to cryo-EM structure determination of small proteins.

     
    more » « less
  3. Elucidating protein–ligand interaction is crucial for studying the function of proteins and compounds in an organism and critical for drug discovery and design. The problem of protein–ligand interaction is traditionally tackled by molecular docking and simulation, which is based on physical forces and statistical potentials and cannot effectively leverage cryo-EM data and existing protein structural information in the protein–ligand modeling process. In this work, we developed a deep learning bioinformatics pipeline (DeepProLigand) to predict protein–ligand interactions from cryo-EM density maps of proteins and ligands. DeepProLigand first uses a deep learning method to predict the structure of proteins from cryo-EM maps, which is averaged with a reference (template) structure of the proteins to produce a combined structure to add ligands. The ligands are then identified and added into the structure to generate a protein–ligand complex structure, which is further refined. The method based on the deep learning prediction and template-based modeling was blindly tested in the 2021 EMDataResource Ligand Challenge and was ranked first in fitting ligands to cryo-EM density maps. These results demonstrate that the deep learning bioinformatics approach is a promising direction for modeling protein–ligand interactions on cryo-EM data using prior structural information. 
    more » « less
  4. Abstract

    An increasing number of density maps of macromolecular structures, including proteins and DNA/RNA complexes, have been determined by cryo-electron microscopy (cryo-EM). Although lately maps at a near-atomic resolution are routinely reported, there are still substantial fractions of maps determined at intermediate or low resolutions, where extracting structure information is not trivial. Here, we report a new computational method, Emap2sec+, which identifies DNA or RNA as well as the secondary structures of proteins in cryo-EM maps of 5 to 10 Å resolution. Emap2sec+ employs the deep Residual convolutional neural network. Emap2sec+ assigns structural labels with associated probabilities at each voxel in a cryo-EM map, which will help structure modeling in an EM map. Emap2sec+ showed stable and high assignment accuracy for nucleotides in low resolution maps and improved performance for protein secondary structure assignments than its earlier version when tested on simulated and experimental maps.

     
    more » « less
  5. Abstract

    An increasing number of protein structures are determined by cryo‐electron microscopy (cryo‐EM) and stored in the Electron Microscopy Data Bank (EMDB). To interpret determined cryo‐EM maps, several methods have been developed that model the tertiary structure of biomolecules, particularly proteins. Here we show how to use two such methods, VESPER and MAINMAST, which were developed in our group. VESPER is a method mainly for two purposes: fitting protein structure models into an EM map and aligning two EM maps locally or globally to capture their similarity. VESPER represents each EM map as a set of vectors pointing toward denser points. By considering matching the directions of vectors, in general, VESPER aligns maps better than conventional methods that only consider local densities of maps. MAINMAST is ade novoprotein modeling tool designed for EM maps with resolution of 3–5 Å or better. MAINMAST builds a protein main chain directly from a density map by tracing dense points in an EM map and connecting them using a tree‐graph structure. This article describes how to use these two tools using three illustrative modeling examples. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.

    Basic Protocol 1: Protein structure model fitting using VESPER

    Alternate Protocol: Atomic model fitting using VESPER web server

    Basic Protocol 2: Proteinde novomodeling using MAINMAST

     
    more » « less