skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Performance of noisy Nesterov's accelerated method for strongly convex optimization problems
We study the performance of noisy gradient descent and Nesterov's accelerated methods for strongly convex objective functions with Lipschitz continuous gradients. The steady-state second-order moment of the error in the iterates is analyzed when the gradient is perturbed by an additive white noise with zero mean and identity covariance. For any given condition number κ, we derive explicit upper bounds on noise amplification that only depend on κ and the problem size. We use quadratic objective functions to derive lower bounds and to demonstrate that the upper bounds are tight up to a constant factor. The established upper bound for Nesterov's accelerated method is larger than the upper bound for gradient descent by a factor of √κ. This gap identifies a fundamental tradeoff that comes with acceleration in the presence of stochastic uncertainties in the gradient evaluation.  more » « less
Award ID(s):
1809833
PAR ID:
10128666
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 American Control Conference (ACC)
Page Range / eLocation ID:
3426 to 3431
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a generalization of Nesterov's accelerated gradient descent algorithm. Our algorithm (AGNES) provably achieves acceleration for smooth convex and strongly convex minimization tasks with noisy gradient estimates if the noise intensity is proportional to the magnitude of the gradient at every point. Nesterov's method converges at an accelerated rate if the constant of proportionality is below 1, while AGNES accommodates any signal-to-noise ratio. The noise model is motivated by applications in overparametrized machine learning. AGNES requires only two parameters in convex and three in strongly convex minimization tasks, improving on existing methods. We further provide clear geometric interpretations and heuristics for the choice of parameters. 
    more » « less
  2. Momentum methods such as Polyak's heavy ball (HB) method, Nesterov's accelerated gradient (AG) as well as accelerated projected gradient (APG) method have been commonly used in machine learning practice, but their performance is quite sensitive to noise in the gradients. We study these methods under a first-order stochastic oracle model where noisy estimates of the gradients are available. For strongly convex problems, we show that the distribution of the iterates of AG converges with the accelerated linear rate to a ball of radius " centered at a unique invariant distribution in the 1-Wasserstein metric where  is the condition number as long as the noise variance is smaller than an explicit upper bound we can provide. Our analysis also certifies linear convergence rates as a function of the stepsize, momentum parameter and the noise variance; recovering the accelerated rates in the noiseless case and quantifying the level of noise that can be tolerated to achieve a given performance. To the best of our knowledge, these are the first linear convergence results for stochastic momentum methods under the stochastic oracle model. We also develop finer results for the special case of quadratic objectives, extend our results to the APG method and weakly convex functions showing accelerated rates when the noise magnitude is sufficiently small. 
    more » « less
  3. This work proposes an accelerated first-order algorithm we call the Robust Momentum Method for optimizing smooth strongly convex functions. The algorithm has a single scalar parameter that can be tuned to trade off robustness to gradient noise versus worst-case convergence rate. At one extreme, the algorithm is faster than Nesterov's Fast Gradient Method by a constant factor but more fragile to noise. At the other extreme, the algorithm reduces to the Gradient Method and is very robust to noise. The algorithm design technique is inspired by methods from classical control theory and the resulting algorithm has a simple analytical form. Algorithm performance is verified on a series of numerical simulations in both noise-free and relative gradient noise cases. 
    more » « less
  4. Adaptive gradient methods, such as AdaGrad, are among the most successful optimization algorithms for neural network training. While these methods are known to achieve better dimensional dependence than stochastic gradient descent (SGD) for stochastic convex optimization under favorable geometry, the theoretical justification for their success in stochastic non-convex optimization remains elusive. In fact, under standard assumptions of Lipschitz gradients and bounded noise variance, it is known that SGD is worst-case optimal in terms of finding a near-stationary point with respect to the l2-norm, making further improvements impossible. Motivated by this limitation, we introduce refined assumptions on the smoothness structure of the objective and the gradient noise variance, which better suit the coordinate-wise nature of adaptive gradient methods. Moreover, we adopt the l1-norm of the gradient as the stationarity measure, as opposed to the standard l2-norm, to align with the coordinate-wise analysis and obtain tighter convergence guarantees for AdaGrad. Under these new assumptions and the l1-norm stationarity measure, we establish an upper bound on the convergence rate of AdaGrad and a corresponding lower bound for SGD. In particular, we identify non-convex settings in which the iteration complexity of AdaGrad is favorable over SGD and show that, for certain configurations of problem parameters, it outperforms SGD by a factor of d, where d is the problem dimension. To the best of our knowledge, this is the first result to demonstrate a provable gain of adaptive gradient methods over SGD in a non-convex setting. We also present supporting lower bounds, including one specific to AdaGrad and one applicable to general deterministic first-order methods, showing that our upper bound for AdaGrad is tight and unimprovable up to a logarithmic factor under certain conditions. 
    more » « less
  5. In this work, we study the convergence \emph{in high probability} of clipped gradient methods when the noise distribution has heavy tails, i.e., with bounded $$p$$th moments, for some $$1 
    more » « less