skip to main content


Title: Probing the ionosphere by the pulsar B0950+08 with help of RadioAstron ground-space baselines
ABSTRACT

The ionospheric scattering of pulses emitted by PSR B0950+08 is measured using the 10-mRadioAstron Space Radio Telescope, the 300-m Arecibo Radio Telescope, and the 14 x 25-m Westerbork Synthesis Radio Telescope (WSRT) at a frequency band between 316 and 332 MHz. We analyse this phenomenon based on a simulated model of the phase difference obtained between antennas that are widely separated by nearly 25 Earth diameters. We present a technique for processing and analysing the ionospheric total electron content (TEC) at the ground stations of the ground-space interferometer. This technique allows us to derive almost synchronous half-hour structures of the TEC in the ionosphere at an intercontinental distance between the Arecibo and WSRT stations. We find that the amplitude values of the detected structures are approximately twice as large as the values for the TEC derived in the international reference ionosphere (IRI) project. Furthermore, the values of the TEC outside these structures are almost the same as the corresponding values found by the IRI. According to a preliminary analysis, the detected structures were observed during a geomagnetic storm with a minimum Dst index of ∼75 nT generated by interplanetary disturbances, and may be due to the influence of interplanetary and magnetospheric phenomena on ionospheric disturbances. We show that the Space Very Long Baseline Interferometry provides us with new opportunities to study the TEC, and we demonstrate the capabilities of this instrument to research the ionosphere.

 
more » « less
NSF-PAR ID:
10128731
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
491
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5843-5851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Variations of vertical atmospheric electric field E z have been attributed mainly to meteorological processes. On the other hand, the theory of electromagnetic waves in the atmosphere, between the bottom ionosphere and earth’s surface, predicts two modes, magnetic H (TE) and electric E (TH) modes, where the E-mode has a vertical electric field component, E z . Past attempts to find signatures of ULF (periods from fractions to tens of minutes) disturbances in E z gave contradictory results. Recently, study of ULF disturbances of atmospheric electric field became feasible thanks to project GLOCAEM, which united stations with 1 sec measurements of potential gradient. These data enable us to address the long-standing problem of the coupling between atmospheric electricity and space weather disturbances at ULF time scales. Also, we have reexamined results of earlier balloon-born electric field and ground magnetic field measurements in Antarctica. Transmission of storm sudden commencement (SSC) impulses to lower latitudes was often interpreted as excitation of the electric TH 0 mode, instantly propagating along the ionosphere–ground waveguide. According to this theoretical estimate, even a weak magnetic signature of the E-mode ∼1 nT must be accompanied by a burst of E z well exceeding the atmospheric potential gradient. We have examined simultaneous records of magnetometers and electric field-mills during >50 SSC events in 2007–2019 in search for signatures of E-mode. However, the observed E z disturbance never exceeded background fluctuations ∼10 V/m, much less than expected for the TH 0 mode. We constructed a model of the electromagnetic ULF response to an oscillating magnetospheric field-aligned current incident onto the realistic ionosphere and atmosphere. The model is based on numerical solution of the full-wave equations in the atmospheric-ionospheric collisional plasma, using parameters that were reconstructed using the IRI model. We have calculated the vertical and horizontal distributions of magnetic and electric fields of both H- and E-modes excited by magnetospheric field-aligned currents. The model predicts that the excitation rate of the E-mode by magnetospheric disturbances is low, so only a weak E z response with a magnitude of ∼several V/m will be produced by ∼100 nT geomagnetic disturbance. However, at balloon heights (∼30 km), electric field of the E-mode becomes dominating. Predicted amplitudes of horizontal electric field in the atmosphere induced by Pc5 pulsations and travelling convection vortices, about tens of mV/m, are in good agreement with balloon electric field and ground magnetometer observations. 
    more » « less
  2. Abstract

    Prediction of ionospheric state is a critical space weather problem. We expand on our previous research of medium‐range ionospheric forecasts and present new results on evaluating prediction capabilities of three physics‐based ionosphere‐thermosphere models (Thermosphere Ionosphere Electrodynamics General Circulation Model, TIE‐GCM; Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics Model, CTIPe; and Global Ionosphere Thermosphere Model, GITM). The focus of our study is understanding how current modeling approaches may predict the global ionosphere for geomagnetic storms (as studied through 35 storms during 2000–2016). Prediction approach uses physics‐based modeling without any manual model adjustment, quality control, or selection of the results. Our goal is to understand to what extent current physics‐based modeling can be used in total electron content (TEC) prediction and explore uncertainties of these prediction efforts with multiday lead times. The ionosphere‐thermosphere model runs are driven by actual interplanetary conditions, whether those data come from real‐time measurements or predicted values themselves. These model runs were performed by the Community Coordinated Modeling Center (CCMC). Jet Propulsion Laboratory (JPL)‐produced global ionospheric maps (GIMs) were used to validate model TEC estimates. We utilize the True Skill Statistic (TSS) metric for the TEC prediction evaluation, noting that this is but one metric to assess predictive skill and that complete evaluations require combinations of such metrics. The meanings of contingency table elements for the prediction performance are analyzed in the context of ionosphere modeling. Prediction success is between about 0.2 and 0.5 for weak ionospheric disturbances and decreases for strong disturbances. We evaluate the prediction of TEC decreases and increases. Our results indicate that physics‐based modeling during storms shows promise in TEC prediction with multiday lead time.

     
    more » « less
  3. Abstract

    In this study, we present a bottomside model representation to be used by the Empirical Canadian High Arctic Ionospheric Model (E‐CHAIM). This model features a new approach to modeling the bottomside electron density; namely, instead of modelling electron density directly, E‐CHAIM models the altitude profile of the scale thickness of a single bottomside layer. In this approach, the curvature in the bottomside associated with theEregion andF1 layer is represented in the scale thickness domain as a peak function centered at the layer peak altitude. The use of this approach ensures the production of explicitly doubly differentiable bottomside electron density profiles and directly avoids issues known to exist within current standards, such as the International Reference Ionosphere (IRI), which has discontinuities in space, time, and in the vertical electron density gradient. In terms of performance, after removing the impacts ofhmF2 andNmF2, the new E‐CHAIM profile function generally performs comparably to the IRI, with bottomside TEC from both models within 2.0 TECU (1 TECU = 1016 e/m3) of observations. More specifically, the E‐CHAIM bottomside is demonstrated to outperform the IRI bottomside function in theFregion during low solar activity periods with respect to incoherent scatter radar observations. At high latitudes, E‐CHAIM tends to outperform the IRI during winter months by between 10% and 40% ofNmF2 while being outperformed by the IRI by between 10% and 25% ofNmF2 during summer periods, mainly during the daytime at high solar activity.

     
    more » « less
  4. Abstract

    This study has developed a new TEC‐based ionospheric data assimilation system for 3‐D regional ionospheric imaging over the South American sector (TIDAS‐SA) (45°S–15°N, 35°–85°W, and 100–800 km). The TIDAS‐SA data assimilation system utilizes a hybrid Ensemble‐Variational approach to incorporate a diverse set of ionospheric data sources, including dense ground‐based Global Navigation Satellite System (GNSS) line‐of‐sight Total Electron Content (TEC) data, radio occultation data from the Constellation Observing System for Meteorology, Ionosphere, and Climate‐2 (COSMIC‐2), and altimeter TEC data from the JASON‐3 satellite. TIDAS‐SA can produce a reanalyzed three‐dimensional (3‐D) electron density spatial variation with a high time cadence, yielding spatial‐temporal resolution of 1° (latitude) × 1° (longitude) × 20 km (altitude) × 5 min. This allows us to reconstruct and study the 3‐D ionospheric morphology with multi‐scale structures. The performance of the data assimilation system is validated against independent ionosonde and in situ measurements through an experiment for a strong geomagnetic storm event on 03–04 November 2021. The results demonstrate that TIDAS‐SA can provide detailed and altitude‐resolved information that accurately characterizes the storm‐time ionospheric disturbances in vertical and horizontal domains over the equatorial and low‐latitude regions of South America.

     
    more » « less
  5. Abstract

    A new TEC‐based ionospheric data assimilation system (TIDAS) over the continental US and adjacent area (20°–60°N, 60°–130°W, and 100–600 km) has been developed through assimilating heterogeneous ionospheric data, including dense ground‐based Global Navigation Satellite System (GNSS) Total Electron Content (TEC) from 2,000+ receivers, Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation data, JASON satellite altimeter TEC, and Millstone Hill incoherent scatter radar measurements. A hybrid Ensemble‐Variational scheme is utilized to reconstruct the regional 3‐D electron density distribution: a more realistic and location‐dependent background error covariance matrix is calculated from an ensemble of corrected NeQuick outputs, and a three‐dimensional variational (3DVAR) method is adopted for measurement updates to obtain an optimal state estimation. The spatial‐temporal resolution of the reanalyzed 3‐D electron density product is as high as 1° × 1° in latitude and longitude, 20 km in altitude, and 5 min in universal time, which is sufficient to reproduce ionospheric fine structure and storm‐time disturbances. The accuracy and reliability of data assimilation results are validated using ionosonde and other measurements. TIDAS reanalyzed electron density is able to successfully reconstruct the 3‐D morphology and dynamic evolution of the storm‐enhanced density (SED) plume observed during the St. Patrick's day geomagnetic storm on 17 March 2013 with high fidelity. Using TIDAS, we found that the 3‐D SED plume manifests as a ridge‐like high‐density channel that predominantly occurred between 300 and 500 km during 19:00–21:00 UT for this event, with the F2 region peak height being raised by 40–60 km and peak density enhancement of 30%–50%.

     
    more » « less