skip to main content

Title: Significant luminosity differences of two twin Type Ia supernovae

The Type Ia supernovae (SNe Ia) 2011by, hosted in NGC 3972, and 2011fe, hosted in M101, are optical ‘twins,’ having almost identical optical light-curve shapes, colours, and near-maximum-brightness spectra. However, SN 2011fe had significantly more ultraviolet (UV; 1600 < λ < 2500 Å) flux than SN 2011by before and at peak luminosity. Several theoretical models predict that SNe Ia with higher progenitor metallicity should (1) have additional UV opacity and thus lower UV flux; (2) have an essentially unchanged optical spectral-energy distribution; (3) have a similar optical light-curve shape; and (4) because of the excess neutrons, produce more stable Fe-group elements at the expense of radioactive 56Ni and thus have a lower peak luminosity. Following these predictions, Foley and Kirshner suggested that the difference in UV flux between SNe 2011by and 2011fe was the result of their progenitors having significantly different metallicities. They also measured a large, but insignificant, difference between the peak absolute magnitudes of the SNe (ΔMV, peak = 0.60 ± 0.36 mag), with SN 2011fe being more luminous. We present a new Cepheid-based distance to NGC 3972, substantially improving the precision of the distance measurement for SN 2011by. With these new data, we determine that the SNe have significantly different peak luminosities (ΔMV, peak = 0.335 ± 0.069 mag). Consequently, more » SN 2011fe produced 38 per cent more 56Ni than SN 2011by, consistent with predictions for progenitor metallicity differences for these SNe, although alternative models may also explain this difference. We discuss how progenitor metallicity differences can contribute to the intrinsic scatter for light-curve-shape-corrected SN luminosities, the use of ‘twin’ SNe for measuring distances, and implications for using SNe Ia for constraining cosmological parameters.

« less
 ;  ;  ;  ;  ;  ;  ;  
Award ID(s):
1518052 1815935
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 5991-5999
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) are crucial for constraining the properties of their progenitor systems. Theoretical studies predicted that the UV spectra, which probe the outermost layers of an SN, should be sensitive to the metal content of the progenitor. Using the largest SN Ia UV (λ < 2900 Å) spectroscopic sample obtained from Neil Gehrels Swift Observatory, we investigate the dependence of UV spectra on metallicity. For the first time, our results reveal a correlation (∼2σ) between SN Ia UV flux and host-galaxy metallicities, with SNe in more metal-rich galaxies (which are likely to have higher progenitor metallicities) having lower UV flux level. We find that this metallicity effect is only significant at short wavelengths (λ ≲ 2700 Å), which agrees well with the theoretical predictions. We produce UV spectral templates for SNe Ia at peak brightness. With our sample, we could disentangle the effect of light-curve shape and metallicity on the UV spectra. We also examine the correlation between the UV spectra and SN luminosities as parametrized by Hubble residuals. However, we do not see a significant trend with Hubble residuals. This is probably due to the large uncertainties in SN distances, as the majoritymore »of our sample members are extremely nearby (redshift z ≲ 0.01). Future work with SNe discovered in the Hubble flow will be necessary to constrain a potential metallicity bias on SN Ia cosmology.

    « less
  2. ABSTRACT After correcting for their light-curve shape and colour, Type Ia supernovae (SNe Ia) are precise cosmological distance indicators. However, there remains a non-zero intrinsic scatter in the differences between measured distance and that inferred from a cosmological model (i.e. Hubble residuals or HRs), indicating that SN Ia distances can potentially be further improved. We use the open-source relational data base kaepora to generate composite spectra with desired average properties of phase, light-curve shape, and HR. At many phases, the composite spectra from two subsamples with positive and negative average HRs are significantly different. In particular, in all spectra from 9 d before to 15 d after peak brightness, we find that SNe with negative HRs have, on average, higher ejecta velocities (as seen in nearly every optical spectral feature) than SNe with positive HRs. At +4 d relative to B-band maximum, using a sample of 62 SNe Ia, we measure a 0.091 ± 0.035 mag (2.7σ) HR step between SNe with Si ii λ6355 line velocities ($v_{Si\, rm{\small II}}$) higher/lower than −11 000 km s−1 (the median velocity). After light-curve shape and colour correction, SNe with higher velocities tend to have underestimated distance moduli relative to a cosmological model. The intrinsic scatter in our sample reduces from 0.094 to 0.082 mag after making thismore »correction. Using the Si ii λ6355 velocity evolution of 115 SNe Ia, we estimate that a velocity difference >500 km s−1 exists at each epoch between the positive-HR and negative-HR samples with 99.4 per cent confidence. Finally at epochs later than +37 d, we observe that negative-HR composite spectra tend to have weaker spectral features in comparison to positive-HR composite spectra.« less

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable candles in measurements of the Hubble constant and dark energy. Increasing evidence points towards multiple possible explosion channels as the origin of normal SNe Ia, with possible systematic effects on the determination of cosmological parameters. We present, for the first time, a comprehensive comparison of publicly available SN Ia model nucleosynthetic data with observations of late-time light curve observations of SN Ia events. These models span a wide range of white dwarf (WD) progenitor masses, metallicities, explosion channels, and numerical methodologies. We focus on the influence of 57Ni and its isobaric decay product 57Co in powering the late-time (t > 1000 d) light curves of SNe Ia. 57Ni and 57Co are neutron-rich relative to the more abundant radioisotope 56Ni, and are consequently a sensitive probe of neutronization at the higher densities of near-Chandrashekhar (near-MCh) progenitor WDs. We demonstrate that observations of one SN Ia event, SN 2015F is only consistent with a sub-Chandrasekhar (sub-MCh) WD progenitor. Observations of four other events (SN 2011fe, SN 2012cg, SN 2014J, and SN2013aa) are consistent with both near-MCh and sub-MCh progenitors. Continued observations of late-time light curves of nearby SNe Ia willmore »provide crucial information on the nature of the SN Ia progenitors.

    « less
  4. We present a new calibration of the peak absolute magnitude of Type Ia supernovae (SNe Ia) based on the surface brightness fluctuations (SBF) method, aimed at measuring the value of the Hubble constant. We build a sample of calibrating anchors consisting of 24 SNe hosted in galaxies that have SBF distance measurements. Applying a hierarchical Bayesian approach, we calibrate the SN Ia peak luminosity and extend the Hubble diagram into the Hubble flow by using a sample of 96 SNe Ia in the redshift range 0.02 <  z  < 0.075, which was extracted from the Combined Pantheon Sample. We estimate a value of H 0  = 70.50 ± 2.37 (stat.) ± 3.38 (sys.) km s −1 Mpc −1 (i.e., 3.4% stat., 4.8% sys.), which is in agreement with the value obtained using the tip of the red giant branch calibration. It is also consistent, within errors, with the value obtained from SNe Ia calibrated with Cepheids or the value inferred from the analysis of the cosmic microwave background. We find that the SNe Ia distance moduli calibrated with SBF are on average larger by 0.07 mag than those calibrated with Cepheids. Our results point to possible differences among SNe in different types of galaxies, which could originate from differentmore »local environments and/or progenitor properties of SNe Ia. Sampling different host galaxy types, SBF offers a complementary approach to using Cepheids, which is important in addressing possible systematics. As the SBF method has the ability to reach larger distances than Cepheids, the impending entry of the Vera C. Rubin Observatory and JWST into operation will increase the number of SNe Ia hosted in galaxies where SBF distances can be measured, making SBF measurements attractive for improving the calibration of SNe Ia, as well as in the estimation of H 0 .« less
  5. ABSTRACT We present early-time (t < +50 d) observations of SN 2019muj (=ASASSN-19tr), one of the best-observed members of the peculiar SN Iax class. Ultraviolet and optical photometric and optical and near-infrared spectroscopic follow-up started from ∼5 d before maximum light [tmax(B) on $58707.8$ MJD] and covers the photospheric phase. The early observations allow us to estimate the physical properties of the ejecta and characterize the possible divergence from a uniform chemical abundance structure. The estimated bolometric light-curve peaks at 1.05 × 1042 erg s−1 and indicates that only 0.031 M⊙ of 56Ni was produced, making SN 2019muj a moderate luminosity object in the Iax class with peak absolute magnitude of $M_\rm {V} = -16.4$ mag. The estimated date of explosion is t0 = $58698.2$ MJD and implies a short rise time of trise = 9.6 d in B band. We fit of the spectroscopic data by synthetic spectra, calculated via the radiative transfer code tardis. Adopting the partially stratified abundance template based on brighter SNe Iax provides a good match with SN 2019muj. However, without earlier spectra, the need for stratification cannot be stated in most of the elements, except carbon, which is allowed to appear in the outer layers only. SN 2019muj provides amore »unique opportunity to link extremely low-luminosity SNe Iax to well-studied, brighter SNe Iax.« less