skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Significant luminosity differences of two twin Type Ia supernovae
ABSTRACT The Type Ia supernovae (SNe Ia) 2011by, hosted in NGC 3972, and 2011fe, hosted in M101, are optical ‘twins,’ having almost identical optical light-curve shapes, colours, and near-maximum-brightness spectra. However, SN 2011fe had significantly more ultraviolet (UV; 1600 < λ < 2500 Å) flux than SN 2011by before and at peak luminosity. Several theoretical models predict that SNe Ia with higher progenitor metallicity should (1) have additional UV opacity and thus lower UV flux; (2) have an essentially unchanged optical spectral-energy distribution; (3) have a similar optical light-curve shape; and (4) because of the excess neutrons, produce more stable Fe-group elements at the expense of radioactive 56Ni and thus have a lower peak luminosity. Following these predictions, Foley and Kirshner suggested that the difference in UV flux between SNe 2011by and 2011fe was the result of their progenitors having significantly different metallicities. They also measured a large, but insignificant, difference between the peak absolute magnitudes of the SNe (ΔMV, peak = 0.60 ± 0.36 mag), with SN 2011fe being more luminous. We present a new Cepheid-based distance to NGC 3972, substantially improving the precision of the distance measurement for SN 2011by. With these new data, we determine that the SNe have significantly different peak luminosities (ΔMV, peak = 0.335 ± 0.069 mag). Consequently, SN 2011fe produced 38 per cent more 56Ni than SN 2011by, consistent with predictions for progenitor metallicity differences for these SNe, although alternative models may also explain this difference. We discuss how progenitor metallicity differences can contribute to the intrinsic scatter for light-curve-shape-corrected SN luminosities, the use of ‘twin’ SNe for measuring distances, and implications for using SNe Ia for constraining cosmological parameters.  more » « less
Award ID(s):
1518052 1815935
PAR ID:
10128801
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
491
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5991-5999
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) are crucial for constraining the properties of their progenitor systems. Theoretical studies predicted that the UV spectra, which probe the outermost layers of an SN, should be sensitive to the metal content of the progenitor. Using the largest SN Ia UV (λ < 2900 Å) spectroscopic sample obtained from Neil Gehrels Swift Observatory, we investigate the dependence of UV spectra on metallicity. For the first time, our results reveal a correlation (∼2σ) between SN Ia UV flux and host-galaxy metallicities, with SNe in more metal-rich galaxies (which are likely to have higher progenitor metallicities) having lower UV flux level. We find that this metallicity effect is only significant at short wavelengths (λ ≲ 2700 Å), which agrees well with the theoretical predictions. We produce UV spectral templates for SNe Ia at peak brightness. With our sample, we could disentangle the effect of light-curve shape and metallicity on the UV spectra. We also examine the correlation between the UV spectra and SN luminosities as parametrized by Hubble residuals. However, we do not see a significant trend with Hubble residuals. This is probably due to the large uncertainties in SN distances, as the majority of our sample members are extremely nearby (redshift z ≲ 0.01). Future work with SNe discovered in the Hubble flow will be necessary to constrain a potential metallicity bias on SN Ia cosmology. 
    more » « less
  2. ABSTRACT We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intranight rises during the early light curve. Early B − V colours show SN 2021fxy is the first ‘shallow-silicon’ (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blueshifted mid-UV spectral features and strong high-velocity Ca ii features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity. 
    more » « less
  3. We present a comparative study of two nearby type Ia supernovae (SNe Ia), 2018xx and 2019gbx, that exploded in NGC 4767 and MCG-02-33-017 at a distance of 48 Mpc and 60 Mpc, respectively. The B -band light curve decline rate for SN 2018xx is estimated to be 1.48 ± 0.07 mag and for SN 2019gbx it is 1.37 ± 0.07 mag. Despite the similarities in photometric evolution, quasi-bolometric luminosity, and spectroscopy between these two SNe Ia, SN 2018xx has been found to be fainter by about ∼0.38 mag in the B -band and has a lower 56 Ni yield. Their host galaxies have similar metallicities at the SN location, indicating that the differences between these two SNe Ia may be associated with the higher progenitor metallicity of SN 2018xx. Further inspection of the near-maximum-light spectra has revealed that SN 2018xx has relatively strong absorption features near 4300 Å relative to SN 2019gbx. The application of the code TARDIS fitting to the above features indicates that the absorption features near 4300 Å appear to be related to not only Fe  II /Mg  II abundance but possibly to the other element abundances as well. Moreover, SN 2018xx shows a weaker carbon absorption at earlier times, which is also consistent with higher ejecta metallicity. 
    more » « less
  4. Abstract Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively “03fg-like” SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon–oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB= −18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peakB-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [Oi]λλ6300, 6364 (FWHM ≈ 2000 km s−1), strong, broad emission from [Caii]λλ7291, 7323 (FWHM ≈ 7300 km s−1), and a rapid Feiiito Feiiionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (withT≈ 500 K), combined with prominent [Oi] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM. 
    more » « less
  5. ABSTRACT We present the photometry and spectroscopy of SN 2015an, a type II Supernova (SN) in IC 2367. The recombination phase of the SN lasts up to 120 d, with a decline rate of 1.24 mag/100d, higher than the typical SNe IIP. The SN exhibits bluer colours than most SNe II, indicating higher ejecta temperatures. The absolute V-band magnitude of SN 2015an at 50 d is −16.83 ± 0.04 mag, pretty typical for SNe II. However, the 56Ni mass yield, estimated from the tail V-band light curve to be 0.021 ± 0.010 M⊙, is comparatively low. The spectral properties of SN 2015an are atypical, with low H α expansion velocity and presence of high-velocity component of H α at early phases. Moreover, the continuum exhibits excess blue flux up to 50 d, which is interpreted as a progenitor metallicity effect. The high-velocity feature indicates ejecta-circumstellar material interaction at early phases. The semi-analytical modelling of the bolometric light curve yields a total ejected mass of 12 M⊙, a pre-SN radius of 388 R⊙ and explosion energy of 1.8 foe. 
    more » « less