skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scientific Visualization and Reproducibility for “Open” Environmental Science
Practicing reproducible scientific research requires access to appropriate reproducibility methodology and software, as well as open data. Strict reproducibility in complex scientific domains such as environmental science, ecology and medicine, however, is difficult if not impossible. Here, we consider replication as a relaxed but bona fide substitution for strict reproducibility and propose using 3D terrain visualization for replication in environmental science studies that propose causal relationships between one or more driver variables and one or more response variables across complex ecosystem landscapes. We base our contention of the usefulness of visualization for replication on more than ten years observing environmental science modelers who use our 3D terrain visualization software to develop, calibrate, validate, and integrate predictive models. To establish the link between replication and model validation and corroboration, we consider replication as proposed by Munafò, i.e., triangulation. We enumerate features of visualization systems that would enable such triangulation and argue that such systems would render feasible domain-specific, open visualization software for use in replicating environmental science studies.  more » « less
Award ID(s):
1637320
PAR ID:
10128989
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings IEEE Conference on Big Data
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Credibility building activities in computational research include verification and validation, reproducibility and replication, and uncertainty quantification. Though orthogonal to each other, they are related. This paper presents validation and replication studies in electromagnetic excitations on nanoscale structures, where the quantity of interest is the wavelength at which resonance peaks occur. The study uses the open-source software PyGBe : a boundary element solver with treecode acceleration and GPU capability. We replicate a result by Rockstuhl et al. (2005, doi:10/dsxw9d) with a two-dimensional boundary element method on silicon carbide (SiC) particles, despite differences in our method. The second replication case from Ellis et al. (2016, doi:10/f83zcb) looks at aspect ratio effects on high-order modes of localized surface phonon-polariton nanostructures. The results partially replicate: the wavenumber position of some modes match, but for other modes they differ. With virtually no information about the original simulations, explaining the discrepancies is not possible. A comparison with experiments that measured polarized reflectance of SiC nano pillars provides a validation case. The wavenumber of the dominant mode and two more do match, but differences remain in other minor modes. Results in this paper were produced with strict reproducibility practices, and we share reproducibility packages for all, including input files, execution scripts, secondary data, post-processing code and plotting scripts, and the figures (deposited in Zenodo). In view of the many challenges faced, we propose that reproducible practices make replication and validation more feasible. This article is part of the theme issue ‘Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification in silico ’. 
    more » « less
  2. The scientific computing community has long taken a leadership role in understanding and assessing the relationship of reproducibility to cyberinfrastructure, ensuring that computational results - such as those from simulations - are "reproducible", that is, the same results are obtained when one re-uses the same input data, methods, software and analysis conditions. Starting almost a decade ago, the community has regularly published and advocated for advances in this area. In this article we trace this thinking and relate it to current national efforts, including the 2019 National Academies of Science, Engineering, and Medicine report on "Reproducibility and Replication in Science". To this end, this work considers high performance computing workflows that emphasize workflows combining traditional simulations (e.g. Molecular Dynamics simulations) with in situ analytics. We leverage an analysis of such workflows to (a) contextualize the 2019 National Academies of Science, Engineering, and Medicine report's recommendations in the HPC setting and (b) envision a path forward in the tradition of community driven approaches to reproducibility and the acceleration of science and discovery. The work also articulates avenues for future research at the intersection of transparency, reproducibility, and computational infrastructure that supports scientific discovery. 
    more » « less
  3. Abstract In this paper, we explore the crucial role and challenges of computational reproducibility in geosciences, drawing insights from the Climate Informatics Reproducibility Challenge (CICR) in 2023. The competition aimed at (1) identifying common hurdles to reproduce computational climate science; and (2) creating interactive reproducible publications for selected papers of the Environmental Data Science journal. Based on lessons learned from the challenge, we emphasize the significance of open research practices, mentorship, transparency guidelines, as well as the use of technologies such as executable research objects for the reproduction of geoscientific published research. We propose a supportive framework of tools and infrastructure for evaluating reproducibility in geoscientific publications, with a case study for the climate informatics community. While the recommendations focus on future CIRCs, we expect they would be beneficial for wider umbrella of reproducibility initiatives in geosciences. 
    more » « less
  4. Abstract Large‐scale digitization projects such as#ScanAllFishesandoVertare generating high‐resolution microCT scans of vertebrates by the thousands. Data from these projects are shared with the community using aggregate 3D specimen repositories like MorphoSource through various open licenses. We anticipate an explosion of quantitative research in organismal biology with the convergence of available data and the methodologies to analyse them.Though the data are available, the road from a series of images to analysis is fraught with challenges for most biologists. It involves tedious tasks of data format conversions, preserving spatial scale of the data accurately, 3D visualization and segmentations, and acquiring measurements and annotations. When scientists use commercial software with proprietary formats, a roadblock for data exchange, collaboration and reproducibility is erected that hurts the efforts of the scientific community to broaden participation in research.We developed SlicerMorph as an extension of 3D Slicer, a biomedical visualization and analysis ecosystem with extensive visualization and segmentation capabilities built on proven python‐scriptable open‐source libraries such as Visualization Toolkit and Insight Toolkit. In addition to the core functionalities of Slicer, SlicerMorph provides users with modules to conveniently retrieve open‐access 3D models or import users own 3D volumes, to annotate 3D curve and patch‐based landmarks, generate landmark templates, conduct geometric morphometric analyses of 3D organismal form using both landmark‐driven and landmark‐free approaches, and create 3D animations from their results. We highlight how these individual modules can be tied together to establish complete workflow(s) from image sequence to morphospace. Our software development efforts were supplemented with short courses and workshops that cover the fundamentals of 3D imaging and morphometric analyses as it applies to study of organismal form and shape in evolutionary biology.Our goal is to establish a community of organismal biologists centred around Slicer and SlicerMorph to facilitate easy exchange of data and results and collaborations using 3D specimens. Our proposition to our colleagues is that using a common open platform supported by a large user and developer community ensures the longevity and sustainability of the tools beyond the initial development effort. 
    more » « less
  5. Abstract. Reproducible open science with FAIR data sharing principles requires research to be disseminated with open data and standardised metadata. Researchers in the geographic sciences may benefit from authoring and maintaining metadata from the earliest phases of the research life cycle, rather than waiting until the data dissemination phase. Fully open and reproducible research should be conducted within a version-controlled executable research compendium with registered pre-analysis plans, and may also involve research proposals, data management plans, and protocols for research with human subjects. We review metadata standards and research documentation needs through each phase of the research process to distil a list of features for software to support a metadata-rich open research life cycle. The review is based on open science and reproducibility literature and on our own work developing a template research compendium for conducting reproduction and replication studies. We then review available open source geographic metadata software against these requirements, finding each software program to offer a partial solution. We conclude with a vision for software-supported metadata-rich open research practices intended to reduce redundancies in open research work while expanding transparency and reproducibility in geographic research. 
    more » « less