skip to main content


Title: Sources and atmospheric dynamics of organic aerosol in New Delhi, India: insights from receptor modeling
Abstract. Delhi, India, is the second most populated city in the world and routinely experiences some of the highest particulate matter concentrations of any megacity on the planet, posing acute challenges to public health (World Health Organization, 2018). However, the current understanding of the sources and dynamics of PM pollution in Delhi is limited. Measurements at the Delhi Aerosol Supersite (DAS) provide long-term chemical characterization of ambient submicron aerosol in Delhi, with near-continuous online measurements of aerosol composition. Here we report on source apportionment based on positive matrix factorization (PMF), conducted on 15 months of highly time-resolved speciated submicron non-refractory PM1 (NR-PM1) between January 2017 and March 2018. We report on seasonal variability across four seasons of 2017 and interannual variability using data from the two winters and springs of 2017 and 2018. We show that a modified tracer-based organic component analysis provides an opportunity for a real-time source apportionment approach for organics in Delhi. Phase equilibrium modeling of aerosols using the extended aerosol inorganics model (E-AIM) predicts equilibrium gas-phase concentrations and allows evaluation of the importance of the ventilation coefficient (VC) and temperature in controlling primary and secondary organic aerosol. We also find that primary aerosol dominates severe air pollution episodes, and secondary aerosol dominates seasonal averages.  more » « less
Award ID(s):
1653625
NSF-PAR ID:
10129190
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
20
Issue:
2
ISSN:
1680-7324
Page Range / eLocation ID:
735 to 752
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Delhi, India, experiences extremely high concentrations ofprimary organic aerosol (POA). Few prior source apportionment studies onDelhi have captured the influence of biomass burning organic aerosol (BBOA) and cooking organic aerosol(COA) on POA. In a companion paper, we develop a new method to conductsource apportionment resolved by time of day using the underlying approachof positive matrix factorization (PMF). We call this approach “time-of-dayPMF” and statistically demonstrate the improvements of this approach overtraditional PMF. Here, we quantify the contributions of BBOA, COA, andhydrocarbon-like organic aerosol (HOA) by applying positive matrixfactorization (PMF) resolved by time of day on two seasons (winter andmonsoon seasons of 2017) using organic aerosol measurements from an aerosol chemicalspeciation monitor (ACSM). We deploy the EPA PMF tool with the underlyingMultilinear Engine (ME-2) as the PMF solver. We also conduct detaileduncertainty analysis for statistical validation of our results. HOA is a major constituent of POA in both winter and the monsoon. In addition toHOA, COA is found to be a major constituent of POA in the monsoon, and BBOA isfound to be a major constituent of POA in the winter. Neither COA nor thedifferent types of BBOA were resolved in the seasonal (not time-resolved)analysis. The COA mass spectra (MS) profiles are consistent with massspectral profiles from Delhi and around the world, particularly resemblingMS of heated cooking oils with a high m/z 41. The BBOA MS have a very prominentm/z 29 in addition to the characteristic peak at m/z 60, consistent with previousMS observed in Delhi and from wood burning sources. In addition toseparating the POA, our technique also captures changes in MS profiles withthe time of day, a unique feature among source apportionment approachesavailable. In addition to the primary factors, we separate two to three oxygenated organicaerosol (OOA)components. When all factors are recombined to total POA and OOA, ourresults are consistent with seasonal PMF analysis conducted using EPA PMF.Results from this work can be used to better design policies that targetrelevant primary sources of organic aerosols in Delhi. 
    more » « less
  2. Abstract. Present methodologies for source apportionment assumefixed source profiles. Since meteorology and human activity patterns changeseasonally and diurnally, application of source apportionment techniques toshorter rather than longer time periods generates more representative massspectra. Here, we present a new method to conduct source apportionmentresolved by time of day using the underlying approach of positive matrixfactorization (PMF). We call this approach “time-of-day PMF” andstatistically demonstrate the improvements in this approach over traditionalPMF. We report on source apportionment conducted on four example timeperiods in two seasons (winter and monsoon seasons of 2017), using organic aerosolmeasurements from an aerosol chemical speciation monitor (ACSM). We deploythe EPA PMF tool with the underlying Multilinear Engine (ME-2) as the PMFsolver. Compared to the traditional seasonal PMF approach, we extract alarger number of factors as well as PMF factors that represent the expectedsources of primary organic aerosol using time-of-day PMF. By capturingdiurnal time series patterns of sources at a low computational cost,time-of-day PMF can utilize large datasets collected using long-termmonitoring and improve the characterization of sources of organic aerosolcompared to traditional PMF approaches that do not resolve by time of day. 
    more » « less
  3. Abstract

    The majority of the aerosol particle number (condensation nuclei or CN) in the marine boundary layer (MBL) consists of sulfate and organic compounds that have been shown to provide a large fraction of the cloud condensation nuclei (CCN). Here we use submicron non‐refractory Aerosol Mass Spectrometer (AMS) and filter measurements of organic and sulfate components of aerosol particles measured during four North Atlantic Aerosol and Marine Ecosystems Study (NAAMES) research cruises to assess the sources and contributions of submicron organic and sulfate components for CCN concentrations in the MBL during four different seasons. Submicron hydroxyl group organic mass (OM) correlated strongly to sodium concentrations during clean marine periods (R = 0.9), indicating that hydroxyl group OM can serve as a proxy for sea‐spray OM in ambient measurements. Sea‐spray OM contributed 45% of the sum of sea‐spray OM and sea salt during late spring (biomass climax phase) compared to <20% for other seasons, but the seasonal difference was not statistically significant. The contribution of non‐combustion sources during clean marine periods to submicron OM was 47 to 88% and to non‐sea‐salt sulfate 31 to 86%, with likely sources being marine and biogenic. The remaining submicron OM and sulfate were likely associated with ship or continental sources, including biomass burning, even during clean marine periods. The seasonal contribution from secondary sulfate and OM components to submicron aerosol mass was highest during late spring (60%), when biogenic emissions are expected to be highest, and lowest during winter (18%). Removing submicron sea‐spray OM decreased CCN concentrations by <10% because of competing effects from increased hygroscopicity and decreased particle size. During all seasons, adding biogenic secondary sulfate increased hygroscopicity, particle size, and CCN concentrations at 0.1–0.3% supersaturations by 5–66%. The largest change was during early spring when the fraction of hygroscopic sulfate components in the 0.1–0.2 μm size range was highest (80%). During continental periods, the increased contribution from low‐hygroscopicity organic components to 0.1–0.2 μm diameter particles reduces the CCN/CN by 20–100% for three seasons despite the increased CN and mass concentrations. These results illustrate the important role of the chemical composition of particles with diameters 0.1–0.2 μm for controlling CCN in the MBL.

     
    more » « less
  4. Abstract. In this study, we present atmospheric ice-nucleating particle (INP)concentrations from the Gruvebadet (GVB) observatory in Ny-Ålesund(Svalbard). All aerosol particle sampling activities were conducted in April–August 2018. Ambient INP concentrations (nINP) were measured for aerosolparticles collected on filter samples by means of two offline instruments:the Dynamic Filter Processing Chamber (DFPC) and the West Texas CryogenicRefrigerator Applied to Freezing Test system (WT-CRAFT) to assesscondensation and immersion freezing, respectively. DFPC measured nINPs for aset of filters collected through two size-segregated inlets: one fortransmitting particulate matter of less than 1 µm (PM1), theother for particles with an aerodynamic diameter of less than 10 µmaerodynamic diameter (PM10). Overall, nINPPM10 measured by DFPC ata water saturation ratio of 1.02 ranged from 3 to 185 m−3 attemperatures (Ts) of −15 to −22 ∘C. On average, the super-micrometer INP (nINPPM10-nINPPM1) accounted forapproximately 20 %–30 % of nINPPM10 in spring, increasing in summer to45 % at −22 ∘C and 65 % at −15 ∘C. This increase in super-micrometer INP fraction towards summer suggests that super-micrometeraerosol particles play an important role as the source of INPs in theArctic. For the same T range, WT-CRAFT measured 1 to 199 m−3. Althoughthe two nINP datasets were in general agreement, a notable nINP offset wasobserved, particularly at −15 ∘C. Interestingly, the results ofboth DFPC and WT-CRAFT measurements did not show a sharp increase in nINPfrom spring to summer. While an increase was observed in a subset of ourdata (WT-CRAFT, between −18 and −21 ∘C), the spring-to-summernINP enhancement ratios never exceeded a factor of 3. More evident seasonal variability was found, however, in our activated fraction (AF) data, calculated by scaling the measured nINP to the total aerosol particleconcentration. In 2018, AF increased from spring to summer. This seasonal AFtrend corresponds to the overall decrease in aerosol concentration towardssummer and a concomitant increase in the contribution of super-micrometer particles. Indeed, the AF of coarse particles resulted markedly higher thanthat of sub-micrometer ones (2 orders of magnitude). Analysis of low-traveling back-trajectories and meteorological conditions at GVB matched to our INP data suggests that the summertime INP population isinfluenced by both terrestrial (snow-free land) and marine sources. Ourspatiotemporal analyses of satellite-retrieved chlorophyll a, as well as spatial source attribution, indicate that the maritime INPs at GVB may comefrom the seawaters surrounding the Svalbard archipelago and/or in proximityto Greenland and Iceland during the observation period. Nevertheless,further analyses, performed on larger datasets, would be necessary to reachfirmer and more general conclusions. 
    more » « less
  5. Abstract

    Secondary organic aerosol (SOA) from pollution sources is thought to be a minor component of organic aerosol (OA) and fine particulate matter beyond the urban scale. Here we present airborne observations of OA in the northeastern United States, showing that 58% of OA over the region during winter is secondary and originates from pollution sources. We observed a doubling of OA mass from SOA formation in aged emissions, with unexpected similarity to OA growth observed in polluted areas in the summer. A regional model with a simple SOA parameterization based on summer measurements reproduces these winter observations and shows that pollution SOA is widespread, accounting for 14% of submicron particulate matter in near‐surface air. This source of particulate matter is largely unaccounted for in air quality management in the northeastern United States and other polluted areas.

     
    more » « less