skip to main content


Title: Effects of urbanization on regional meteorology and air quality in Southern California
Abstract. Urbanization has a profound influence on regional meteorology and air qualityin megapolitan Southern California. The influence of urbanization onmeteorology is driven by changes in land surface physical properties and landsurface processes. These changes in meteorology in turn influence air qualityby changing temperature-dependent chemical reactions and emissions,gas–particle phase partitioning, and ventilation of pollutants. In this studywe characterize the influence of land surface changes via historicalurbanization from before human settlement to the present day on meteorology andair quality in Southern California using the Weather Research and ForecastingModel coupled to chemistry and the single-layer urban canopy model(WRF–UCM–Chem). We assume identical anthropogenic emissions for thesimulations carried out and thus focus on the effect of changes in landsurface physical properties and land surface processes on air quality.Historical urbanization has led to daytime air temperature decreases of up to1.4 K and evening temperature increases of up to 1.7 K. Ventilation of airin the LA basin has decreased up to 36.6 % during daytime and increasedup to 27.0 % during nighttime. These changes in meteorology are mainlyattributable to higher evaporative fluxes and thermal inertia of soil fromirrigation and increased surface roughness and thermal inertia frombuildings. Changes in ventilation drive changes in hourlyNOx concentrations with increases of up to 2.7 ppb duringdaytime and decreases of up to 4.7 ppb at night. Hourly O3concentrations decrease by up to 0.94 ppb in the morning and increase by upto 5.6 ppb at other times of day. Changes in O3 concentrations aredriven by the competing effects of changes in ventilation and precursorNOx concentrations. PM2.5 concentrations show slightincreases during the day and decreases of up to 2.5 µg m−3at night. Process drivers for changes in PM2.5 include modificationsto atmospheric ventilation and temperature, which impact gas–particle phasepartitioning for semi-volatile compounds and chemical reactions.Understanding process drivers related to how land surface changes effectregional meteorology and air quality is crucial for decision-making on urbanplanning in megapolitan Southern California to achieve regional climateadaptation and air quality improvements.  more » « less
Award ID(s):
1752522 1512429
NSF-PAR ID:
10129212
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
19
Issue:
7
ISSN:
1680-7324
Page Range / eLocation ID:
4439 to 4457
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cities are simultaneously implementing urban greening and reducing anthropogenic emissions to combat climate change, but these strategies can have complex and potentially counteracting effects on regional atmospheric chemistry. Urban greening can increase emissions of volatile organic compounds (BVOCs), while climate change mitigation strategies reduce co‐emitted pollutants such as nitrogen oxides (NOx). The nonlinear relationship between ozone (O3) and BVOC and NOxconcentrations makes it crucial to investigate potential interactions between urban greening and anthropogenic emissions reductions. Here, we use regional atmospheric chemistry modeling to assess O3sensitivity to a 50% increase in urban vegetation in the Los Angeles Basin. We evaluated potential interactions between urban greening and climate change mitigation by running urban greening simulations with current day and future anthropogenic emissions that reflect renewable energy adoption and electrification in Los Angeles, CA. Our model results show that urban greening increased daily maximum 8‐hr ozone concentrations with higher increases modeled under current day anthropogenic emissions. Urban greening had complex effects on hourly O3concentrations, with increased O3concentrations up to 0.95 ppb during the day following increased biogenic emissions and reduced urban O3concentrations up to 0.41 ppb at night following reduced ventilation of NOx. Under the future anthropogenic emissions scenario, reductions in NOxsomewhat mitigated the daytime O3penalties of urban greening but also dampened nighttime O3reductions. Our results suggest that urban greening will likely have regional O3penalties if new vegetation is high isoprene emitting, even as NOxemissions are drastically reduced following climate change mitigation.

     
    more » « less
  2. Abstract. Our work explores the impact of two important dimensions of landsystem changes, land use and land cover change (LULCC) as well as directagricultural reactive nitrogen (Nr) emissions from soils, on ozone(O3) and fine particulate matter (PM2.5) in terms of air quality overcontemporary (1992 to 2014) timescales. We account for LULCC andagricultural Nr emissions changes with consistent remote sensingproducts and new global emission inventories respectively estimating theirimpacts on global surface O3 and PM2.5 concentrations as well as Nrdeposition using the GEOS-Chem global chemical transport model. Over thistime period, our model results show that agricultural Nr emissionchanges cause a reduction of annual mean PM2.5 levels over Europe andnorthern Asia (up to −2.1 µg m−3) while increasing PM2.5 levels in India, China and the eastern US (up to +3.5 µg m−3). Land cover changes induce small reductions in PM2.5 (up to −0.7 µg m−3) over Amazonia, China and India due to reduced biogenic volatile organic compound (BVOC) emissions and enhanced deposition of aerosol precursor gases (e.g., NO2, SO2). Agricultural Nr emissionchanges only lead to minor changes (up to ±0.6 ppbv) in annual meansurface O3 levels, mainly over China, India and Myanmar. Meanwhile, ourmodel result suggests a stronger impact of LULCC on surface O3 over the time period across South America; the combination of changes in drydeposition and isoprene emissions results in −0.8 to +1.2 ppbv surfaceozone changes. The enhancement of dry deposition reduces the surface ozone level (up to −1 ppbv) over southern China, the eastern US and central Africa. The enhancement of soil NO emission due to crop expansion also contributes to surface ozone changes (up to +0.6 ppbv) over sub-Saharan Africa. Incertain regions, the combined effects of LULCC and agricultural Nr emission changes on O3 and PM2.5 air quality can be comparable (>20 %) to anthropogenic emission changes over the same time period. Finally, we calculate that the increase in global agricultural Nr emissions leads to a net increase in global land area (+3.67×106km2) that potentially faces exceedance of the critical Nr load (>5 kg N ha−1 yr−1). Our result demonstrates the impacts of contemporary LULCC and agricultural Nr emission changes on PM2.5 and O3 in terms of air quality, as well as the importanceof land system changes for air quality over multidecadal timescales. 
    more » « less
  3. A regional modeling system that integrates the state-of-the-art emissions processing (SMOKE), climate (CWRF), and air quality (CMAQ) models has been combined with satellite measurements of fire activities to assess the impact of fire emissions on the contiguous United States (CONUS) air quality during 1997–2016. The system realistically reproduced the spatiotemporal distributions of the observed meteorology and surface air quality, with a slight overestimate of surface ozone (O3) by ~4% and underestimate of surface PM2.5 by ~10%. The system simulation showed that the fire impacts on primary pollutants such as CO were generally confined to the fire source areas but its effects on secondary pollutants like O3 spread more broadly. The fire contribution to air quality varied greatly during 1997-2016 and occasionally accounted for more than 100 ppbv of monthly mean surface CO and over 20 µg m−3 of monthly mean PM2.5 in the Northwest U.S. and Northern California, two regions susceptible to frequent fires. Fire emissions also had implications on air quality compliance. From 1997 to 2016, fire emissions increased surface 8-hour O3 standard exceedances by 10% and 24-hour PM2.5 exceedances by 33% over CONUS. 
    more » « less
  4. Abstract

    This paper examines summer- and wintertime variations of the surface and near-surface urban heat island (UHI) for the Phoenix metropolitan area using the Moderate Resolution Imaging Spectroradiometer (MODIS), near-surface meteorological observations, and the Weather Research and Forecasting (WRF) Model during a 31-day summer- and a 31-day wintertime period. The surface UHI (defined based on the urban–rural land surface temperature difference) is found to be higher at night and during the warm season. On the other hand, the morning surface UHI is low and frequently exhibits an urban cool island that increases during the summertime period. Similarly, the near-surface UHI (defined based on the urban–rural 2-m air temperature difference) is higher at night and during summertime. On the other hand, the daytime near-surface UHI is low but rarely exhibits an urban cool island. To evaluate the WRF Model’s ability to reproduce the diurnal cycle of near-surface meteorology and surface skin temperature, two WRF Model experiments (one using the Bougeault and Lacarrere turbulent scheme and one with the Mellor–Yamada–Janjić turbulent parameterization) at high spatial resolution (1-km horizontal grid spacing) are conducted for each 31-day period. Modeled results show that the WRF Model (coupled to the Noah-MP land surface model) tends to underestimate to some extent surface skin temperature during daytime and overestimate nighttime values during the wintertime period. In the same way, the WRF Model tends to accurately reproduce the diurnal cycle of near-surface air temperature, including maximum and minimum temperatures, and wind speed during summertime, but notably overestimates nighttime near-surface air temperature during wintertime. This nighttime overestimation is especially remarkable with the Bougeault and Lacarrere turbulent scheme for both urban and rural areas.

     
    more » « less
  5. The daytime oxidation of biogenic hydrocarbons is attributed to both OH radicals and O3, while nighttime chemistry is dominated by the reaction with O3 and NO3 radicals. Here, the diurnal pattern of Secondary Organic Aerosol (SOA) originating from biogenic hydrocarbons was intensively evaluated under varying environmental conditions (temperature, humidity, sunlight intensity, NOx levels, and seed conditions) by using the UNIfied Partitioning Aerosol phase Reaction (UNIPAR) model, which comprises multiphase gas-particle partitioning and in-particle chemistry. The oxidized products of three different hydrocarbons (isoprene, α-pinene, and β-caryophyllene) were predicted by using near explicit gas mechanisms for four different oxidation paths (OH, O3, NO3, and O(3P)) during day and night. The gas mechanisms implemented the Master Chemical Mechanism (MCM v3.3.1), the reactions that formed low volatility products via peroxy radical (RO2) autoxidation, and self- and cross-reactions of nitrate-origin RO2. In the model, oxygenated products were then classified into volatility-reactivity base lumping species, which were dynamically constructed under varying NOx levels and aging scales. To increase feasibility, the UNIPAR model that equipped mathematical equations for stoichiometric coefficients and physicochemical parameters of lumping species was integrated with the SAPRC gas mechanism. The predictability of the UNIPAR model was demonstrated by simulating chamber-generated SOA data under varying environments day and night. Overall, the SOA simulation decoupled to each oxidation path indicated that the nighttime isoprene SOA formation was dominated by the NO3-driven oxidation, regardless of NOx levels. However, the oxidation path to produce the nighttime α-pinene SOA gradually transited from the NO3-initiated reaction to ozonolysis as NOx levels decreased. For daytime SOA formation, both isoprene and α-pinene were dominated by the OH-radical initiated oxidation. The contribution of the O(3P) path to all biogenic SOA formation was negligible in daytime. Sunlight during daytime promotes the decomposition of oxidized products via photolysis and thus, reduces SOA yields. Nighttime α-pinene SOA yields were significantly higher than daytime SOA yields, although the nighttime α-pinene SOA yields gradually decreased with decreasing NOx levels. For isoprene, nighttime chemistry yielded higher SOA mass than daytime at the higher NOx level (isoprene/NOx > 5 ppbC/ppb). The daytime isoprene oxidation at the low NOx level formed epoxy-diols that significantly contributed SOA formation via heterogeneous chemistry. For isoprene and α-pinene, daytime SOA yields gradually increased with decreasing NOx levels. The daytime SOA produced more highly oxidized multifunctional products and thus, it was generally more sensitive to the aqueous reactions than the nighttime SOA. β-Caryophyllene, which rapidly oxidized and produced SOA with high yields, showed a relatively small variation in SOA yields from changes in environmental conditions (i.e., NOx levels, seed conditions, and diurnal pattern), and its SOA formation was mainly attributed to ozonolysis day and night. To mimic the nighttime α-pinene SOA formation under the polluted urban atmosphere, α-pinene SOA formation was simulated in the presence of gasoline fuel. The simulation suggested the growth of α-pinene SOA in the presence of gasoline fuel gas by the enhancement of the ozonolysis path under the excess amount of ozone, which is typical in urban air. We concluded that the oxidation of the biogenic hydrocarbon with O3 or NO3 radicals is a source to produce a sizable amount of nocturnal SOA, despite of the low emission at night. 
    more » « less