skip to main content


Title: Enstatite (MgSiO3) and forsterite (Mg2SiO4) monomers and dimers: highly detectable infrared and radioastronomical molecular building blocks
ABSTRACT

Isolated MgSiO3 and Mg2SiO4 molecules are shown here to exhibit bright infrared (IR) features that fall close to unattributed astronomical lines observed toward objects known to possess crystalline enstatite and forsterite, minerals of the same respective empirical formulae. These molecules are therefore tantalizing candidates for explaining the origin of such features. Furthermore, the C2v monomer minima of each formula set have dipole moments on the order of 10.0 D or larger making them desirable candidates for radioastronomical observation as enabled through rotational spectroscopic data further provided in this high-level CCSD(T)-F12/cc-pVTZ-F12 quantum chemical study. Astrophysical detection of these molecules could inform the build-up pathways for creating nanocrystals from small molecules in protoplanetary discs or could show the opposite in explaining the destruction of enstatite and forsterite minerals in supernovae events or other high-energy stellar processes. This work also shows that the lowest energy isomers for molecules containing the geologically necessary elements Mg and Si have oxygen bonded between any of the other heavier elements making oxygen the glue for pre-mineralogic chemistry.

 
more » « less
NSF-PAR ID:
10129387
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
492
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 276-282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present results from conducting a theoretical chemical analysis of a sample of benchmark companion brown dwarfs whose primary star is of type F, G, or K. We summarize the entire known sample of these types of companion systems, termed “compositional benchmarks,” that are present in the literature or recently published as key systems of study in order to best understand brown dwarf chemistry and condensate formation. Via mass balance and stoichiometric calculations, we predict a median brown dwarf atmospheric oxygen sink of17.82.3+1.7%by utilizing published stellar abundances in the local solar neighborhood. Additionally, we predict a silicate condensation sequence such that atmospheres with bulk Mg/Si ≲0.9 will form enstatite (MgSiO3) and quartz (SiO2) clouds, and atmospheres with bulk Mg/Si ≳0.9 will form enstatite and forsterite (Mg2SiO4) clouds. The implications of these results on C/O ratio trends in substellar-mass objects and the utility of these predictions in future modeling work are discussed.

     
    more » « less
  2. null (Ed.)
    Bio-derived isobutanol has been approved as a gasoline additive in the US, but our understanding of its combustion chemistry still has significant uncertainties. Detailed quantum calculations could improve model accuracy leading to better estimation of isobutanol's combustion properties and its environmental impacts. This work examines 47 molecules and 38 reactions involved in the first oxygen addition to isobutanol's three alkyl radicals located α, β, and γ to the hydroxide. Quantum calculations are mostly done at CCSD(T)-F12/cc-pVTZ-F12//B3LYP/CBSB7, with 1-D hindered rotor corrections obtained at B3LYP/6-31G(d). The resulting potential energy surfaces are the most comprehensive isobutanol peroxy networks published to date. Canonical transition state theory and a 1-D microcanonical master equation are used to derive high-pressure-limit and pressure-dependent rate coefficients, respectively. At all conditions studied, the recombination of γ-isobutanol radical with O 2 forms HO 2 + isobutanal. The recombination of β-isobutanol radical with O 2 forms a stabilized hydroperoxy alkyl radical below 400 K, water + an alkoxy radical at higher temperatures, and HO 2 + an alkene above 1200 K. The recombination of β-isobutanol radical with O 2 results in a mixture of products between 700–1100 K, forming acetone + formaldehyde + OH at lower temperatures and forming HO 2 + alkenes at higher temperatures. The barrier heights, high-pressure-limit rates, and pressure-dependent kinetics generally agree with the results from previous quantum chemistry calculations. Six reaction rates in this work deviate by over three orders of magnitude from kinetics in detailed models of isobutanol combustion, suggesting the rates calculated here can help improve modeling of isobutanol combustion and its environmental fate. 
    more » « less
  3. Abstract

    Bacillus subtilisendospore‐mediated forsterite dissolution experiments were performed to assess the effects of cell surface reactivity on Mg isotope fractionation during chemical weathering. Endospores present a unique opportunity to study the isolated impact of cell surface reactivity because they exhibit extremely low metabolic activity. In abiotic control assays,24Mg was preferentially released into solution during forsterite dissolution, producing an isotopically light liquid phase (δ26Mg = −0.39 ± 0.06 to −0.26 ± 0.09‰) relative to the initial mineral composition (δ26Mg = −0.24 ± 0.03‰). The presence of endospores did not have an apparent effect on Mg isotope fractionation associated with the release of Mg from the solid into the aqueous phase. However, the endospore surfaces preferentially adsorbed24Mg from the dissolution products, which resulted in relatively heavy aqueous Mg isotope compositions. These aqueous Mg isotope compositions increased proportional to the fraction of dissolved Mg that was adsorbed, with the highest measured δ26Mg (−0.08 ± 0.07‰) corresponding to the highest degree of adsorption (~76%). The Mg isotope composition of the adsorbed fraction was correspondingly light, at an average δ26Mg of −0.49‰. Secondary mineral precipitation and Mg adsorption onto secondary minerals had a minimal effect on Mg isotopes at these experimental conditions. Results demonstrate the isolated effects of cell surface reactivity on Mg isotope fractionation separate from other common biological processes, such as metabolism and organic acid production. With further study, Mg isotopes could be used to elucidate the role of the biosphere on Mg cycling in the environment.

     
    more » « less
  4. Abstract

    Meteorites preserve evidence of processes on their parent bodies, including alteration, metamorphism, and shock events. Here we show that the Kakowa (L6) ordinary chondrite (OC) preserves both shock-melt veins and pockets of detrital grains from a brecciated and altered object, including corundum, albite, silica, fayalite, forsterite, and margarite in a Pb- and Fe-rich matrix. Preservation of the observed mineralogy and texture requires a sequence of at least two impacts: first, a high-velocity collision formed the shock melt veins containing the high-pressure minerals ringwoodite, wadsleyite, majorite, and albitic jadeite; later, a low-velocity impact formed fractures and filled them with the detrital material. Oxygen and Pb isotope ratios suggest an OC origin for these detrital minerals. Although fluid alteration is common in carbonaceous chondrites, the discovery of margarite with an OC oxygen isotopic signature is novel. Kakowa extends both the impact and alteration history of L6 ordinary chondrites in general.

     
    more » « less
  5. Abstract

    Establishing plausible routes for the abiotic formation of nucleotides is a challenging problem because the phosphorylation of organic molecules is thermodynamically unfavorable in water, and because common phosphorous‐containing minerals such as apatite are highly insoluble. Reactions of reduced phases such as the meteoritic mineral schreibersite with ammonia containing solutions can form stable amino‐derivatives of phosphates/phosphite, and carbonate‐rich lakes have been suggested as environments where phosphate species and organic molecules could accumulate in significant abundances, thus promoting an ideal environment for abiotic phosphorylation. This work reports the catalytic properties of three CaCO3polymorphs—calcite, aragonite, and vaterite—on diamidophosphate (DAP)‐induced phosphorylation of the uridine nucleoside during a 24‐hr dry‐down reaction. It is shown that the phosphorylation reaction is accelerated in solutions containing CaCO3compared to those with no mineral present. For un‐buffered solutions with no mineral present, the primary products formed are uridine monophosphates (UMPs), with yields making up 22.3 ± 3.9% of the total detected species, while solutions containing calcite and aragonite formed primarily UMP dimers (yields of 15.3 ± 1.1% and 14.8 ± 1.3%, respectively). Vaterite showed a strong preference for forming cyclic UMP (cUMP) (26.3 ± 0.3% yield), and no higher order polymers were observed using any carbonate mineral. Reactions containing CaSO4·2H2O (gypsum) showed a preference for forming cUMP, though not as strong as vaterite, while those containing CaCl2(calcium chloride) and CaWO4(scheelite) did not yield any phosphorylated products other than UMPs. These results suggest that CaCO3minerals could have played an important role in facilitating prebiotic phosphorylation in aqueous environments that undergo drying cycles.

     
    more » « less