skip to main content

Title: Cool Jupiters greatly outnumber their toasty siblings: occurrence rates from the Anglo-Australian Planet Search

Our understanding of planetary systems different to our own has grown dramatically in the past 30 yr. However, our efforts to ascertain the degree to which the Solar system is abnormal or unique have been hindered by the observational biases inherent to the methods that have yielded the greatest exoplanet hauls. On the basis of such surveys, one might consider our planetary system highly unusual – but the reality is that we are only now beginning to uncover the true picture. In this work, we use the full 18-yr archive of data from the Anglo-Australian Planet Search to examine the abundance of ‘cool Jupiters’ – analogues to the Solar system’s giant planets, Jupiter and Saturn. We find that such planets are intrinsically far more common through the cosmos than their siblings, the hot Jupiters. We find that the occurrence rate of such ‘cool Jupiters’ is $6.73^{+2.09}_{-1.13}$ per cent, almost an order of magnitude higher than the occurrence of hot Jupiters (at $0.84^{+0.70}_{-0.20}$ per cent). We also find that the occurrence rate of giant planets is essentially constant beyond orbital distances of ∼1 au. Our results reinforce the importance of legacy radial velocity surveys for the understanding of the Solar system’s place in the cosmos.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 377-383
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT White dwarfs are one of the few types of stellar object for which we have yet to confirm the existence of companion planets. Recent evidence for metal contaminated atmospheres, circumstellar debris discs, and transiting planetary debris all indicates that planets may be likely. However, white dwarf transit surveys are challenging due to the intrinsic faintness of such objects, the short time-scale of the transits, and the low transit probabilities due to their compact radii. The Large Synoptic Survey Telescope (LSST) offers a remedy to these problems as a deep, half-sky survey with fast exposures encompassing approximately 10 million whitemore »dwarfs with r < 24.5 apparent magnitude (mr). We simulate LSST photometric observations of 3.5 million white dwarfs over a 10 yr period and calculate the detectability of companion planets with P < 10 d via transits. We find typical detection rates in the range of 5 × 10−6 to 4 × 10−4 for Ceres-sized bodies to Earth-sized worlds, yielding ∼50–$4000$ detections for a 100 per cent occurrence rate of each. For terrestrial planets in the continuously habitable zone, we find detection rates of ∼10−3 indicating that LSST would reveal hundreds of such worlds for occurrence rates in the range of 1–10 per cent.« less
  2. Abstract The majority of binary star systems that host exoplanets will spend the first portion of their lives within a star-forming cluster that may drive dynamical evolution of the binary-planet system. We perform numerical simulations of S-type planets, with masses and orbital architecture analogous to the Solar system’s 4 gas giants, orbiting within the influence of a 0.5 M⊙ binary companion. The binary-planet system is integrated simultaneously with an embedded stellar cluster environment. ∼10 per cent of our planetary systems are destabilized when perturbations from our cluster environment drive the binary periastron toward the planets. This destabilization occurs despite all of our systemsmore »being initialized with binary orbits that would allow stable planets in the absence of the cluster. The planet-planet scattering triggered in our systems typically results in the loss of lower mass planets and the excitement of the eccentricities of surviving higher mass planets. Many of our planetary systems that go unstable also lose their binary companions prior to cluster dispersal and can therefore masquerade as hosts of eccentric exoplanets that have spent their entire histories as isolated stars. The cluster-driven binary orbital evolution in our simulations can also generate planetary systems with misaligned spin-orbit angles. This is typically done as the planetary system precesses as a rigid disk under the influence of an inclined binary, and those systems with the highest spin-orbit angles should often retain their binary companion and possess multiple surviving planets.« less
  3. Abstract

    We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package juliet reveals that TOI-150b is a $1.254\pm 0.016\ \rm {R}_ \rm{J}$, massive ($2.61^{+0.19}_{-0.12}\ \rm {M}_ \rm{J}$) hot Jupiter in a 5.857-d orbit, while TOI-163b is anmore »inflated ($R_ \rm{P}$ = $1.478^{+0.022}_{-0.029} \,\mathrm{ R}_ \rm{J}$, $M_ \rm{P}$ = $1.219\pm 0.11 \, \rm{M}_ \rm{J}$) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit ($e=0.262^{+0.045}_{-0.037}$), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization – in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter–McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ).

    « less
  4. Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert Systemmore »(ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.« less
  5. ABSTRACT Partial condensation of dust from the Solar nebula is likely responsible for the diverse chemical compositions of chondrites and rocky planets/planetesimals in the inner Solar system. We present a forward physical–chemical model of a protoplanetary disc to predict the chemical compositions of planetary building blocks that may form from such a disc. Our model includes the physical evolution of the disc and the condensation, partial advection, and decoupling of the dust within it. The chemical composition of the condensate changes with time and radius. We compare the results of two dust condensation models: one where an element condenses whenmore »the mid-plane temperature in the disc is lower than the 50 per cent condensation temperature ($\rm T_{50}$) of that element and the other where the condensation of the dust is calculated by a Gibbs free energy minimization technique assuming chemical equilibrium at local disc temperature and pressure. The results of two models are generally consistent with some systematic differences of ∼10 per cent depending upon the radial distance and an element’s condensation temperature. Both models predict compositions similar to CM, CO, and CV chondrites provided that the decoupling time-scale of the dust is of the order of the evolution time-scale of the disc or longer. If the decoupling time-scale is too short, the composition deviates significantly from the measured values. These models may contribute to our understanding of the chemical compositions of chondrites, and ultimately the terrestrial planets in the Solar system, and may constrain the potential chemical compositions of rocky exoplanets.« less