skip to main content


Title: The Impacts of Horizontal Resolution on the Seasonally Dependent Biases of the Northeastern Pacific ITCZ in Coupled Climate Models
ABSTRACT

The double-ITCZ bias has puzzled the climate modeling community for more than two decades. Here we show that, over the northeastern Pacific Ocean, precipitation and sea surface temperature (SST) biases are seasonally dependent in the NCAR CESM1 and 37 CMIP5 models, with positive biases during boreal summer–autumn and negative biases during boreal winter–spring, although the easterly wind bias persists year round. This seasonally dependent bias is found to be caused by the model’s failure to reproduce the climatological seasonal wind reversal of the North American monsoon. During winter–spring, the observed easterly wind dominates, so the simulated stronger wind speed enhances surface evaporation and lowers SST. It is opposite when the observed wind turns to westerly during summer–autumn. An easterly wind bias, mainly evident in the lower troposphere, also occurs in the atmospheric model when the observed SST is prescribed, suggesting that it is of atmospheric origin. When the atmospheric model resolution is doubled in the CESM1, both SST and precipitation are improved in association with the reduced easterly wind bias. During boreal spring, when the double-ITCZ bias is most significant, the northern and southern ITCZ can be improved by 29.0% and 18.8%, respectively, by increasing the horizontal resolution in the CESM1. When dividing the 37 CMIP5 models into two groups on the basis of their horizontal resolutions, it is found that both the seasonally dependent biases over the northeastern Pacific and year-round biases over the southeastern Pacific are reduced substantially in the higher-resolution models, with improvement of ~30% in both regions during boreal spring. Close relationships between wind and precipitation biases over the northeastern and southeastern Pacific are also found among CMIP5 models.

 
more » « less
NSF-PAR ID:
10129518
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
3
ISSN:
0894-8755
Page Range / eLocation ID:
p. 941-957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The eastern Pacific double-ITCZ bias has long been attributed to the warm bias of SST in the southeastern Pacific and associated local air–sea interaction. In this study, we conducted two simulations using the NCAR CESM1.2.1 to demonstrate that significant double-ITCZ bias can still form in the eastern Pacific through air–sea coupled feedback even when there is cold SST bias in the southeastern Pacific, indicating that other nonlocal culprits and mechanisms should be responsible for the double-ITCZ bias in the eastern Pacific. Further analyses show that the oversimulated convection in the northern ITCZ region and Central America in boreal winter may result in biases in the surface wind fields in the tropical northeastern Pacific in the atmospheric model, which favor the cooling of the ocean mixed layer through enhancement of latent heat flux and Ekman upwelling. These biases are passed into the ocean model in coupled simulations and result in a severe cold bias of SST in the northern ITCZ region. The overly cold SST bias persists in the subsequent spring, leading to the suppression of convection in the northern ITCZ region. The enhanced low-level cross-equatorial northerly wind strengthens the wind convergence south of the equator and transports abundant water vapor to the convergence zone, strengthening the southern ITCZ convection. All these processes lead to the disappearance of the northern ITCZ and the enhancement of the southern ITCZ in boreal spring, forming a seasonally alternating double-ITCZ bias. This study suggests that convection biases in the northern ITCZ region and Central America in boreal winter may be a culprit for the double-ITCZ bias in the eastern Pacific.

     
    more » « less
  2. Abstract

    The intertropical convergence zone (ITCZ) is a zonally elongated band of near-surface convergence and precipitation near the equator. During boreal spring, the eastern Pacific ITCZ migrates latitudinally on daily to subseasonal time scales, and climate models exhibit the greatest ITCZ biases during this time of the year. In this work, we investigate the air–sea interactions associated with the variability in the eastern Pacific ITCZ’s latitudinal location for consecutive days when the ITCZ is only located north of the equator (nITCZ events) compared to when the ITCZ is on both sides of the equator or south of the equator (dsITCZ events) during February–April. The distribution of sea surface temperature (SST) anomalies and surface latent heat flux (SLHF) anomalies during the nITCZ and dsITCZ events follow the classic wind–evaporation–SST (WES) positive feedback mechanism. However, an alternative mechanism, embracing the effect of SST anomalies on vertical stratification and momentum mixing, gives rise to a negative WES feedback. Our results show that in the surface layer, there is a general progression of positive WES feedbacks happening in the weeks leading to the events followed by negative WES feedbacks occurring after the ITCZ events, with an alternate mechanism involving air–sea humidity differences limiting evaporation occurring in between. Additionally, the spatial structures of the components of the feedbacks are nearly mirror images for these opposite ITCZ events over the east Pacific during boreal spring. In closing, we find that understanding the air–sea interactions during daily to weekly varying ITCZ events (nITCZ and dsITCZ) helps to pinpoint how fundamental processes differ for ITCZs in different hemispheres.

     
    more » « less
  3. Longstanding climate model biases in tropical precipitation exist over the east Pacific (EP) Ocean, especially during boreal winter and spring when models have excessive Southern Hemisphere (SH) precipitation near the intertropical convergence zone (ITCZ). In this study, we document the impact of convectively coupled waves (CCWs) on EP precipitation and the ITCZ using observations and reanalyses. We focus on the months when SH precipitation peaks in observations: February–April (FMA). CCWs explain 93% of total precipitation variance in the SH, nearly double the percent (48%) of the NH during FMA. However, we note that these percentages are inflated as they inevitably include the background variance. We further investigate the three leading high-frequency wave bands: mixed Rossby–gravity waves and tropical depression–type disturbances (MRG–TD type), Kelvin waves, andn= 0 eastward inertia–gravity waves (IG0). Compared to their warm pool counterparts, these three CCWs have a more zonally elongated and meridionally narrower precipitation structure with circulations that resemble past observational studies and/or shallow water theory. We quantify the contribution of all CCWs to four different daily ITCZ “states”: Northern Hemisphere (NH) (nITCZ), SH (sITCZ), double (dITCZ), and equatorial (eITCZ) using a new precipitation-based ITCZ-state algorithm. We find that the percent of total precipitation variance explained by each of the CCWs is heightened for sITCZs and eITCZs and diminished for nITCZs. Last, we find that nITCZs are most prevalent weeks after strong CCW activity happens in the NH, whereas CCWs and sITCZs peak simultaneously in the SH.

    Significance Statement

    Convectively coupled atmospheric waves (CCWs) are a critical feature of tropical weather and are an important source of precipitation near the region of highest precipitation on Earth called the intertropical convergence zone (ITCZ). Given three decades of climate model biases in CCWs and ITCZ precipitation over the east Pacific (EP) Ocean during spring, few studies have examined the relationship between CCWs and the springtime EP ITCZ. We explored the CCWs and EP ITCZ relationship through calculations of the percent of precipitation that comes from CCWs. A significant portion of the tropical precipitation is associated with CCWs during spring. CCWs are even more impactful when the ITCZ is in the SH or on the equator, which are both problematic in climate models.

     
    more » « less
  4. Abstract

    The northeastern Pacific climate system features an extensive low-cloud deck off California on the southeastern flank of the subtropical high that accompanies intense northeasterly trades and relatively low sea surface temperatures (SSTs). This study assesses climatological impacts of the low-cloud deck and their seasonal differences by regionally turning on and off the low-cloud radiative effect in a fully coupled atmosphere–ocean model. The simulations demonstrate that the cloud radiative effect causes a local SST decrease of up to 3°C on an annual average with the response extending southwestward with intensified trade winds, indicative of the wind–evaporation–SST (WES) feedback. This nonlocal wind response is strong in summer, when the SST decrease peaks due to increased shortwave cooling, and persists into autumn. In these seasons when the background SST is high, the lowered SST suppresses deep-convective precipitation that would otherwise occur in the absence of the low-cloud deck. The resultant anomalous diabatic cooling induces a surface anticyclonic response with the intensified trades that promote the WES feedback. Such seasonal enhancement of the atmospheric response does not occur without air–sea couplings. The enhanced trades accompany intensified upper-tropospheric westerlies, strengthening the vertical wind shear that, together with the lowered SST, acts to shield Hawaii from powerful hurricanes. On the basin scale, the anticyclonic surface wind response accelerates the North Pacific subtropical ocean gyre to speed up the Kuroshio by as much as 30%. SST thereby increases along the Kuroshio and its extension, intensifying upward turbulent heat fluxes from the ocean to increase precipitation.

     
    more » « less
  5. Abstract

    Interactions between ocean basins affect El Niño–Southern Oscillation (ENSO), altering its impacts on society. Here, we explore the effect of Atlantic Multidecadal Variability (AMV) on ENSO behavior using idealized experiments performed with the NCAR‐CESM1 model. Comparing warm (AMV+) to cold (AMV−) AMV conditions, we find that ENSO sea surface temperature (SST) anomalies are reduced by ∼10% and ENSO precipitation anomalies are shifted to the west during El Niño and east during La Niña. Using the Bjerknes stability index, we attribute the reduction in ENSO variability to a weakened thermocline feedback in boreal autumn. In AMV+, the Walker circulation and trade winds strengthen over the tropical Pacific, increasing the background zonal SST gradient. The background changes shift ENSO anomalies westwards, with wind stress anomalies more confined to the west. We suggest the changes in ENSO‐wind stress decrease the strength of the thermocline feedback in the east, eventually reducing ENSO growth rate.

     
    more » « less