Alzheimer’s disease (AD) is a serious neurodegenerative condition that affects millions of individuals across the world. As the average age of individuals in the United States and the world increases, the prevalence of AD will continue to grow. To address this public health problem, the research community has developed computational approaches to sift through various aspects of clinical data and uncover their insights, among which one of the most challenging problem is to determine the biological mechanisms that cause AD to develop. To study this problem, in this paper we present a novel Joint Multi-Modal Longitudinal Regression and Classification method and show how it can be used to identify the cognitive status of the participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort and the underlying biological mechanisms. By intelligently combining clinical data of various modalities (i.e., genetic information and brain scans) using a variety of regularizations that can identify AD-relevant biomarkers, we perform the regression and classification tasks simultaneously. Because the proposed objective is a non-smooth optimization problem that is difficult to solve in general, we derive an efficient iterative algorithm and rigorously prove its convergence. To validate our new method in predicting the cognitive scores of patients and their clinical diagnosis, we conduct comprehensive experiments on the ADNI cohort. Our promising results demonstrate the benefits and flexibility of the proposed method. We anticipate that our new method is of interest to clinical communities beyond AD research and have open-sourced the code of our method online.C
more »
« less
Joint High-Order Multi-Task Feature Learning to Predict the Progression of Alzheimer's Disease
Alzheimer’s disease (AD) is a degenerative brain disease that affects millions of people around the world. As populations in the United States and worldwide age, the prevalence of Alzheimer’s disease will only increase. In turn, the social and financial costs of AD will create a difficult environment for many families and caregivers across the globe.By combining genetic information, brain scans, and clinical data, gathered over time through the Alzheimer’s Disease Neuroimaging Initiative(ADNI), we propose a newJoint High-Order Multi-Modal Multi-Task Feature Learning method to predict the cognitive performance and diagnosis of patients with and without AD.
more »
« less
- PAR ID:
- 10129574
- Date Published:
- Journal Name:
- The Proceedings of the 21st International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2018)
- Page Range / eLocation ID:
- 555-562
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Heterogeneity among Alzheimer’s disease (AD) patients confounds clinical trial patient selection and therapeutic efficacy evaluation. This work defines separable AD clinical sub-populations using unsupervised machine learning. Clustering (t-SNE followed by k-means) of patient features and association rule mining (ARM) was performed on the ADNIMERGE dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Patient sociodemographics, brain imaging, biomarkers, cognitive tests, and medication usage were included for analysis. Four AD clinical sub-populations were identified using between-cluster mean fold changes [cognitive performance, brain volume]: cluster-1 represented least severe disease [+17.3, +13.3]; cluster-0 [−4.6, +3.8] and cluster-3 [+10.8, −4.9] represented mid-severity sub-populations; cluster-2 represented most severe disease [−18.4, −8.4]. ARM assessed frequently occurring pharmacologic substances within the 4 sub-populations. No drug class was associated with the least severe AD (cluster-1), likely due to lesser antecedent disease. Anti-hyperlipidemia drugs associated with cluster-0 (mid-severity, higher volume). Interestingly, antioxidants vitamin C and E associated with cluster-3 (mid-severity, higher cognition). Anti-depressants like Zoloft associated with most severe disease (cluster-2). Vitamin D is protective for AD, but ARM identified significant underutilization across all AD sub-populations. Identification and feature characterization of four distinct AD sub-population “clusters” using standard clinical features enhances future clinical trial selection criteria and cross-study comparative analysis.more » « less
-
Abstract A large number of genetic variations have been identified to be associated with Alzheimer’s disease (AD) and related quantitative traits. However, majority of existing studies focused on single types of omics data, lacking the power of generating a community including multi-omic markers and their functional connections. Because of this, the immense value of multi-omics data on AD has attracted much attention. Leveraging genomic, transcriptomic and proteomic data, and their backbone network through functional relations, we proposed a modularity-constrained logistic regression model to mine the association between disease status and a group of functionally connected multi-omic features, i.e. single-nucleotide polymorphisms (SNPs), genes and proteins. This new model was applied to the real data collected from the frontal cortex tissue in the Religious Orders Study and Memory and Aging Project cohort. Compared with other state-of-art methods, it provided overall the best prediction performance during cross-validation. This new method helped identify a group of densely connected SNPs, genes and proteins predictive of AD status. These SNPs are mostly expression quantitative trait loci in the frontal region. Brain-wide gene expression profile of these genes and proteins were highly correlated with the brain activation map of ‘vision’, a brain function partly controlled by frontal cortex. These genes and proteins were also found to be associated with the amyloid deposition, cortical volume and average thickness of frontal regions. Taken together, these results suggested a potential pathway underlying the development of AD from SNPs to gene expression, protein expression and ultimately brain functional and structural changes.more » « less
-
Abstract Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder and the most common type of dementia. AD is characterized by a decline of cognitive function and brain atrophy, and is highly heritable with estimated heritability ranging from 60 to 80 $$\%$$ % . The most straightforward and widely used strategy to identify AD genetic basis is to perform genome-wide association study (GWAS) of the case-control diagnostic status. These GWAS studies have identified over 50 AD related susceptibility loci. Recently, imaging genetics has emerged as a new field where brain imaging measures are studied as quantitative traits to detect genetic factors. Given that many imaging genetics studies did not involve the diagnostic outcome in the analysis, the identified imaging or genetic markers may not be related or specific to the disease outcome. Results We propose a novel method to identify disease-related genetic variants enriched by imaging endophenotypes, which are the imaging traits associated with both genetic factors and disease status. Our analysis consists of three steps: (1) map the effects of a genetic variant (e.g., single nucleotide polymorphism or SNP) onto imaging traits across the brain using a linear regression model, (2) map the effects of a diagnosis phenotype onto imaging traits across the brain using a linear regression model, and (3) detect SNP-diagnosis association via correlating the SNP effects with the diagnostic effects on the brain-wide imaging traits. We demonstrate the promise of our approach by applying it to the Alzheimer’s Disease Neuroimaging Initiative database. Among 54 AD related susceptibility loci reported in prior large-scale AD GWAS, our approach identifies 41 of those from a much smaller study cohort while the standard association approaches identify only two of those. Clearly, the proposed imaging endophenotype enriched approach can reveal promising AD genetic variants undetectable using the traditional method. Conclusion We have proposed a novel method to identify AD genetic variants enriched by brain-wide imaging endophenotypes. This approach can not only boost detection power, but also reveal interesting biological pathways from genetic determinants to intermediate brain traits and to phenotypic AD outcomes.more » « less
-
Background: The complex and not yet fully understood etiology of Alzheimer’s disease (AD) shows important proteopathic signs which are unlikely to be linked to a single protein. However, protein subsets from deep proteomic datasets can be useful in stratifying patient risk, identifying stage dependent disease markers, and suggesting possible disease mechanisms. Objective: The objective was to identify protein subsets that best classify subjects into control, asymptomatic Alzheimer’s disease (AsymAD), and AD. Methods: Data comprised 6 cohorts; 620 subjects; 3,334 proteins. Brain tissue-derived predictive protein subsets for classifying AD, AsymAD, or control were identified and validated with label-free quantification and machine learning. Results: A 29-protein subset accurately classified AD (AUC = 0.94). However, an 88-protein subset best predicted AsymAD (AUC = 0.92) or Control (AUC = 0.92) from AD (AUC = 0.98). AD versus Control: APP, DHX15, NRXN1, PBXIP1, RABEP1, STOM, and VGF. AD versus AsymAD: ALDH1A1, BDH2, C4A, FABP7, GABBR2, GNAI3, PBXIP1, and PRKAR1B. AsymAD versus Control: APP, C4A, DMXL1, EXOC2, PITPNB, RABEP1, and VGF. Additional predictors: DNAJA3, PTBP2, SLC30A9, VAT1L, CROCC, PNP, SNCB, ENPP6, HAPLN2, PSMD4, and CMAS. Conclusion: Biomarkers were dynamically separable across disease stages. Predictive proteins were significantly enriched to sugar metabolism.more » « less