We propose a visually-grounded library of behaviors approach for learning to manipulate diverse objects across varying initial and goal configurations and camera placements. Our key innovation is to disentangle the standard image-to-action mapping into two separate modules that use different types of perceptual input:(1) a behavior selector which conditions on intrinsic and semantically-rich object appearance features to select the behaviors that can successfully perform the desired tasks on the object in hand, and (2) a library of behaviors each of which conditions on extrinsic and abstract object properties, such as object location and pose, to predict actions to execute overmore »
Using Geometric Features to Represent Near-Contact Behavior in Robotic Grasping
In this paper we define two feature representations for grasping. These representations capture hand-object geometric relationships at the near-contact stage - before the fingers close around the object. Their benefits are: 1) They are stable under noise in both joint and pose variation. 2) They are largely hand and object agnostic, enabling direct comparison across different hand morphologies. 3) Their format makes them suitable for direct application of machine learning techniques developed for images. We validate the representations by: 1) Demonstrating that they can accurately predict the distribution of ε-metric values generated by kinematic noise. I.e., they capture much of the information inherent in contact points and force vectors without the corresponding instabilities. 2) Training a binary grasp success classifier on a real-world data set consisting of 588 grasps.
- Award ID(s):
- 1730126
- Publication Date:
- NSF-PAR ID:
- 10130017
- Journal Name:
- International Conference on Robotics and Applications
- Page Range or eLocation-ID:
- 272772-277772 to 2777
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While current vision algorithms excel at many challenging tasks, it is unclear how well they understand the physical dynamics of real-world environments. Here we introduce Physion, a dataset and benchmark for rigorously evaluating the ability to predict how physical scenarios will evolve over time. Our dataset features realistic simulations of a wide range of physical phenomena, including rigid and soft-body collisions, stable multi-object configurations, rolling, sliding, and projectile motion, thus providing a more comprehensive challenge than previous benchmarks. We used Physion to benchmark a suite of models varying in their architecture, learning objective, input-output structure, and training data. In parallel,more »
-
Dynamic social interaction networks are an important abstraction to model time-stamped social interactions such as eye contact, speaking and listening between people. These networks typically contain informative while subtle patterns that reflect people’s social characters and relationship, and therefore attract the attentions of a lot of social scientists and computer scientists. Previous approaches on extracting those patterns primarily rely on sophisticated expert knowledge of psychology and social science, and the obtained features are often overly task-specific. More generic models based on representation learning of dynamic networks may be applied, but the unique properties of social interactions cause severe model mismatchmore »
-
Drilling and milling operations are material removal processes involved in everyday conventional productions, especially in the high-speed metal cutting industry. The monitoring of tool information (wear, dynamic behavior, deformation, etc.) is essential to guarantee the success of product fabrication. Many methods have been applied to monitor the cutting tools from the information of cutting force, spindle motor current, vibration, as well as sound acoustic emission. However, those methods are indirect and sensitive to environmental noises. Here, the in-process imaging technique that can capture the cutting tool information while cutting the metal was studied. As machinists judge whether a tool ismore »
-
Taxonomies consist of machine-interpretable semantics and provide valuable knowledge for many web applications. For example, online retailers (e.g., Amazon and eBay) use taxonomies for product recommendation, and web search engines (e.g., Google and Bing) leverage taxonomies to enhance query understanding. Enormous efforts have been made on constructing taxonomies eithermanually or semi-automatically. However, with the fast-growing volume of web content, existing taxonomies will become outdated and fail to capture emerging knowledge. Therefore, in many applications, dynamic expansions of an existing taxonomy are in great demand. In this paper, we study how to expand an existing taxonomy by adding a set ofmore »