skip to main content


Title: Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps

Many large proteins suffer from slow or inefficient folding in vitro. It has long been known that this problem can be alleviated in vivo if proteins start folding cotranslationally. However, the molecular mechanisms underlying this improvement have not been well established. To address this question, we use an all-atom simulation-based algorithm to compute the folding properties of various large protein domains as a function of nascent chain length. We find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by nonnative interactions involving C-terminal residues. Thus, cotranslational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins’ sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modeling, we show that under certain conditions, such a slowdown indeed improves cotranslational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from cotranslational folding due to a lack of significant nonnative interactions, and indeed these proteins’ sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell and how biomolecular self-assembly may be optimized evolutionarily.

 
more » « less
Award ID(s):
1764269
NSF-PAR ID:
10130019
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
3
ISSN:
0027-8424
Page Range / eLocation ID:
p. 1485-1495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During the last few decades, the ribosome has been regarded primarily as a major cell player devoted to the catalysis of protein biosynthesis during translation [1-5]. It is therefore not surprising that several processes related to translation exploit the ribosome as a central hub. For instance, it is well-known that many events related to translational regulation are mediated by interactions between the ribosome and initiation, elongation or termination factors [6-9]. In addition, the ribosome is involved in mRNA-code recognition and proofreading [10-12] as well as in the control of translation rates via interactions with mRNA codons bearing high- and lowfrequency [13-15] and associated with variable tRNA abundance within the translation machinery [16-18]. Interestingly, the ribosome also assists de novo protein structure formation by minimizing cotranslational aggregation, thus increasing the yield of native-protein production [19,20]. The latter event, however, has not been shown to require -- or even involve -- direct interactions between the ribosome and the nascent protein chain. A notable exception is that of nascent chains bearing either N-terminal signal sequences or translational-arrest tags. These proteins are known to establish short- or long-term contacts with various regions of the ribosome during translation [21-25]. In summary, until recently very little knowledge has been available about direct contacts between the ribosome and nascent polypeptides and proteins that do not carry signal or arrest sequences. Studies based on fluorescence depolarization in the frequency domain [26] and NMR spectroscopy [27-30] provided interesting data that are consistent with, but do not unequivocally establish, the presence of these interactions. 
    more » « less
  2. Abstract

    Charged residues on the surface of proteins are critical for both protein stability and interactions. However, many proteins contain binding regions with a high net charge that may destabilize the protein but are useful for binding to oppositely charged targets. We hypothesized that these domains would be marginally stable, as electrostatic repulsion would compete with favorable hydrophobic collapse during folding. Furthermore, by increasing the salt concentration, we predict that these protein folds would be stabilized by mimicking some of the favorable electrostatic interactions that take place during target binding. We varied the salt and urea concentrations to probe the contributions of electrostatic and hydrophobic interactions for the folding of the yeast SH3 domain found in Abp1p. The SH3 domain was significantly stabilized with increased salt concentrations due to Debye–Huckel screening and a nonspecific territorial ion‐binding effect. Molecular dynamics and NMR show that sodium ions interact with all 15 acidic residues but do little to change backbone dynamics or overall structure. Folding kinetics experiments show that the addition of urea or salt primarily affects the folding rate, indicating that almost all the hydrophobic collapse and electrostatic repulsion occur in the transition state. After the transition state formation, modest yet favorable short‐range salt bridges are formed along with hydrogen bonds, as the native state fully folds. Thus, hydrophobic collapse offsets electrostatic repulsion to ensure this highly charged binding domain can still fold and be ready to bind to its charged peptide targets, a property that is likely evolutionarily conserved over 1 billion years.

     
    more » « less
  3. Abstract

    The influence of the ribosome on nascent chains is poorly understood, especially in the case of proteins devoid of signal or arrest sequences. Here, we provide explicit evidence for the interaction of specific ribosomal proteins with ribosome-bound nascent chains (RNCs). We target RNCs pertaining to the intrinsically disordered protein PIR and a number of mutants bearing a variable net charge. All the constructs analyzed in this work lack N-terminal signal sequences. By a combination chemical crosslinking and Western-blotting, we find that all RNCs interact with ribosomal protein L23 and that longer nascent chains also weakly interact with L29. The interacting proteins are spatially clustered on a specific region of the large ribosomal subunit, close to the exit tunnel. Based on chain-length-dependence and mutational studies, we find that the interactions with L23 persist despite drastic variations in RNC sequence. Importantly, we also find that the interactions are highly Mg+2-concentration-dependent. This work is significant because it unravels a novel role of the ribosome, which is shown to engage with the nascent protein chain even in the absence of signal or arrest sequences.

     
    more » « less
  4. β- N -methylamino- l -alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS–purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine codons, following a screen for amino acid activation in ATP/PP i exchange assays, we observed that BMAA is not a substrate for human seryl-tRNA synthetase (SerRS). Instead, we observed that BMAA is a substrate for human alanyl-tRNA synthetase (AlaRS) and can form BMAA-tRNA Ala by escaping from the intrinsic AlaRS proofreading activity. Furthermore, we found that BMAA inhibits both the cognate amino acid activation and the editing functions of AlaRS. Our results reveal that, in addition to being misincorporated during translation, BMAA may be able to disrupt the integrity of protein synthesis through multiple different mechanisms. 
    more » « less
  5. N.A. (Ed.)
    In order to become bioactive, proteins need to be biosynthesized and protected from aggregation during translation. The ribosome and molecular chaperones contribute to both tasks. While it is known that some ribosomal proteins (r-proteins) interact with ribosome-bound nascent chains (RNCs), specific interaction networks and their role within the ribosomal machinery remain poorly characterized and understood. Here, we find that RNCs of variable sequence and length (beyond the 1st C-terminal reside) do not modify the apparent stability of the peptidyl-transferase center (PTC) and r-proteins. Thus, RNC/r-protein interaction networks close to the PTC have no effect on the apparent stability of ribosome-RNC complexes. Further, fluorescence anisotropy decay, chemical-crosslinking and Western blots show that RNCs of the foldable protein apoHmp1-140 have an N-terminal compact region (6394 residues) and interact specifically with r-protein L23 but not with L24 or L29, at the ribosomal-tunnel exit. Longer RNCs bear a similar compact region and interact either with L23 alone or with L23 and another unidentified r-protein, or with molecular chaperones. The apparent strength of RNC/r-protein interactions does not depend on RNC sequence. Taken together, our findings show that RNCs encoding foldable protein sequences establish an expanding specific interaction network as they get longer, including L23, another r-protein and chaperones. Interestingly, the ribosome alone (i.e., in the absence of chaperones) provides indiscriminate support to RNCs bearing up to ca. 190 residues, regardless of nascent-chain sequence and foldability. In all, this study highlights the unbiased features of the ribosome as a powerful nascent-protein interactor. 
    more » « less