skip to main content


Title: Retinol-Binding Protein Stability in Dried Blood Spots
Abstract

Background: Retinol-binding protein (RBP) is accepted as a surrogate biochemical marker for retinol to determine vitamin A (VA) status. A recently developed enzyme immunoassay for RBP uses serum or whole blood stored as dried blood spots (DBS). However, the stability of RBP in DBS has not been examined.

Methods: RBP stability was studied in a laboratory and in field conditions in northern Kenya. For the laboratory study, 63 DBS collected by finger prick and stored sealed in a plastic bag with desiccant were exposed to 1 of 5 time/storage-temperature treatments: (a) baseline, (b) 30 °C/7 days, (c) 30 °C/14 days, (d) 30 °C/28 days, and (e) 4 °C/38 days. Baseline RBP concentrations were compared to those obtained after the storage treatments. For the field study, 50 paired DBS and serum specimens were prepared from venous blood obtained in northern Kenya. DBS were stored in a sealed plastic bag with desiccant at ambient temperature (12 °C–28 °C) for 13–42 days, and sera were stored at −20 °C to −70 °C. Recovered RBP concentrations were compared with serum retinol for stability, correlation, sensitivity, and specificity.

Results: RBP in DBS stored in the laboratory at 30 °C remained stable for 2–4 weeks, but specimens stored at 4 °C for 38 days produced values below baseline (P = 0.001). DBS stored under field conditions remained stable for 2–6 weeks, as demonstrated by good correlation with serum retinol, a result that suggests that RBP in DBS will have good sensitivity and specificity for predicting VA deficiency.

Conclusion: RBP in DBS can withstand storage at a relatively high ambient temperature and thus facilitate accurate VA assessments in populations in locations where serum collection and storage are unfeasible.

 
more » « less
NSF-PAR ID:
10130057
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Clinical Chemistry
Volume:
53
Issue:
11
ISSN:
0009-9147
Page Range / eLocation ID:
p. 1972-1975
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objectives

    Vitamin A (VA) is an essential micronutrient required for a range of biological functions throughout life. VA deficiency (VAD) claims an estimated 1 million preschool children's lives annually. Human milk is enriched with VA (retinol) from the maternal blood, which originates from the hepatic reserve and dietary intake. Secreting retinol into milk will benefit the nursing infant through breast milk, but retaining retinol is also important for the maternal health. Previous studies found that the public health intervention of high‐dose VA supplementation to lactating mothers did not significantly lower child mortality. The World Health Organization (WHO) recently acknowledged that our understanding about the principle of VA allocation within the maternal system and the secretion into milk is too incomplete to devise an effective intervention.

    Methods

    We present a secondary analysis of data collected among lactating mothers in VAD endemic northern Kenya (n = 171), examining nutritional, inflammatory, and ecological factors that might associate with maternal retinol allocation. Regression models were applied using the outcome milk‐retinol allocation index: milk retinol/(milk retinol + serum retinol).

    Results

    Ten percent of the sample was identified as VAD. The average milk retinol concentration was 0.1 μmo/L, grossly below what is considered minimally necessary for an infant (1 μmol/L). VAD mothers and mothers with inflammation did not seem to compromise their milk retinol even though their serum retinol was lower than non‐VAD and noninflammation mothers. Breast milk fat concentration positively correlated with milk retinol but not with serum retinol.

    Conclusions

    This exploratory study contributes toward an understanding of maternal retinol allocation.

     
    more » « less
  2. Abstract Objectives

    A number of basic questions about bone biology have not been answered, including population differences in bone turnover. In part, this stems from the lack of validated minimally invasive biomarker techniques to measure bone formation and resorption in field‐based population‐level research. The present study addresses this gap by validating a fingerprick dried blood spot (fDBS) assay for tartrate‐resistant acid phosphatase 5b (TRACP‐5b), a well‐defined biomarker of bone resorption and osteoclast number.

    Methods

    We adapted a commercially available enzyme‐linked immunosorbent assay (ELISA) kit from MyBiosource for the quantitative determination of TRACP‐5b levels in serum and plasma for use with DBS. We used a rigorous process of assay modification and validation, including the use of a matched set of 189 adult plasma, fDBS, and venous DBS (vDBS) samples; parameters evaluated included precision, reliability, and analyte stability.

    Results

    Plasma and DBS TRACP‐5b concentrations showed a linear relationship. There were no systematic differences in TRACP‐5b levels in fDBS and vDBS, indicating no significant differences in TRACP‐5b distribution between capillary and venous blood. Parallelism and spike‐and‐recovery results indicated that matrix factors in DBS do not interfere with measurement of TRACP‐5b levels from DBS using the validated kit. Intra‐ and interassay CVs were 5.0% and 12.1%, respectively. DBS samples should preferably be stored frozen but controlled room temperature storage for up to a month may be acceptable.

    Conclusions

    This DBS‐based ELISA assay adds to the methodological toolkit available to human biologists and will facilitate research on bone turnover in population studies.

     
    more » « less
  3. Abstract Objectives

    Investigating factors that contribute to bone loss and accretion across populations in remote settings is challenging, particularly where diagnostic tools are scarce. To mitigate this challenge, we describe validation of a commercial ELISA assay to measure osteocalcin, a biomarker of bone formation, from dried blood spots (DBS).

    Methods

    We validated the Osteocalcin Human SimpleStep ELISA kit from Abcam (ab1951214) using 158 matched plasma and DBS samples. Passing‐Bablok regression analysis assessed the relationships between plasma and DBS osteocalcin concentrations. Dilutional linearity and spike and recovery experiments determined if the DBS matrix interfered with osteocalcin measurement, and intra‐ and inter‐assay coefficients of variation (CVs) were calculated. Limit of detection, analyte stability, and specific forms of osteocalcin measured by the kit were also investigated.

    Results

    Mean plasma osteocalcin value was 218.2 ng/mL (range 64.6‐618.1 ng/mL). Linear relationships existed between plasma and DBS concentrations of osteocalcin, with no apparent bias in plasma vs DBS concentrations. There was no apparent interference of the DBS matrix with measurement of osteocalcin in DBS. Intra‐assay CV for DBS was ~8%, while average inter‐assay CV was 14.8%. Limit of detection was 0.34 ng/mL. Osteocalcin concentrations were stable in DBS stored at −28°C and room temperature, but not those stored at 37°C. This ELISA kit detects total osteocalcin.

    Conclusions

    Osteocalcin, a bone formation biomarker, can be measured from DBS. Combined with a previously validated DBS assay for TRACP‐5b, a bone resorption biomarker, these assays have the potential to help researchers disentangle the many factors contributing to bone strength.

     
    more » « less
  4. Three-dimensional (3D) dried blood spheroids form when whole blood is deposited onto hydrophobic paper and allowed to dry in ambient air. The adsorbed 3D dried blood spheroid present at the surface of the hydrophobic paper is observed to offer enhanced stability for labile analytes that would otherwise degrade if stored in the traditional two-dimensional (2D) dried blood spot method. The protective mechanism for the dried blood spheroid microsampling platform was studied using scanning electron microscopy (SEM), which revealed the presence of a passivation thin film at the surface of the spheroid that serves to stabilize the interior of the spheroid against environmental stressors. Through time-course experiments based on sequential SEM analyses, we discovered that the surface protective thin film forms through the self-assembly of red blood cells following the evaporation of water from the blood sample. The bridging mechanism of red blood cell aggregation is evident in our experiments, which leads to the distinct rouleau conformation of stacked red blood cells in less than 60 min after creating the blood spheroid. The stack of self-assembled red blood cells at the exterior of the spheroid subsequently lyse to afford the surface protective layer detected to be approximately 30 μm in thickness after three weeks of storage in ambient air. We applied this mechanistic insight to plasma and serum to enhance stability when stored under ambient conditions. In addition to physical characterization of these thin biofilms, we also used paper spray (PS) mass spectrometry (MS) to examine chemical changes that occur in the stored biofluid. For example, we present stability data for cocaine spiked in whole blood, plasma, and serum when stored under ambient conditions on hydrophilic and hydrophobic paper substrates. 
    more » « less
  5. Objective: Folate in breastmilk has important implications for offspring health and survival given the essential role of this vitamin in DNA synthesis, epigenetic functions, and amino acid metabolism. Yet, little is understood about the variation of folate in breastmilk and transfer across the postpartum year and beyond. Published studies tend to be limited to milk during days/weeks postpartum, and none applied an evolutionary perspective of parental investment. Methods: A secondary analysis of the data and specimens from 200 breastfeeding mothers within 1.5 years postpartum in food-insecure northern Kenya was conducted. ELISA determined folate-binding protein (FOLR1) in cryogenically archived breastmilk and maternal blood specimens, originally collected in 2006. Maternal folate was defined as blood serum FOLR1 multiplied by –1 because elevated FOLR1 is associated with folate deficiency. The concentration of milk FOLR1 was evaluated in relation to maternal folate and 1) infant sex (Trivers-Willard hypothesis), 2) time postpartum and parity (maternal residual reproductive value) using regression models adjusted for covariates. Results indicated: 1) no Trivers-Willard effect; 2) support for time postpartum but not for parity. Maternal folate and time postpartum inversely predicted milk FOLR1. There was an interaction between these variables (p<0.05). Maternal folate improved over time at a varying rate while milk FOLR1 decreased at a relatively steady rate. This inverse relationship became stronger as time advanced. Conclusion: The priority shift from the investment in current offspring toward maternal soma and potential future offspring in this study provides empirical support for the evolutionary hypothesis of parental investment and parent-offspring conflict. This study was funded by NSF (BCS #1638167), and the Wenner-Gren Foundation (Grant #9278). The original data/specimen collection was supported by NSF (BCS #0622358) and the Wenner-Gren Foundation (Grant #7460). 
    more » « less