skip to main content

Title: High-performance graphene-integrated thermo-optic switch: design and experimental validation [Invited]

The extraordinary optical properties of single-layer graphene have spurred the development of a variety of photonic components. We have previously demonstrated a scalable and versatile platform to facilitate the integration of graphene and other 2-D materials with chalcogenide glass-based planar photonics. In this paper, we detail the design criteria and optimization guidelines towards high-performance graphene-integrated thermo-optic (TO) switches based on the chalcogenide glass-on-graphene platform. Notably, absorption loss of graphene can be reduced to < 20 dB/cm when it is sandwiched inside photonic structures capitalizing on the anisotropic absorption property of graphene. We quantify energy efficiency of the TO switch, showing that the choice of cladding materials plays a critical role in improving device efficiency. Furthermore, we report a record TO switching efficiency of 10 nm/mW via judicious engineering of the overlap between optical mode and thermal profile.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Page Range / eLocation ID:
Article No. 387
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The development of compact and fieldable mid-infrared (mid-IR) spectroscopy devices represents a critical challenge for distributed sensing with applications from gas leak detection to environmental monitoring. Recent work has focused on mid-IR photonic integrated circuit (PIC) sensing platforms and waveguide-integrated mid-IR light sources and detectors based on semiconductors such as PbTe, black phosphorus and tellurene. However, material bandgaps and reliance on SiO2substrates limit operation to wavelengthsλ ≲ 4 μm. Here we overcome these challenges with a chalcogenide glass-on-CaF2PIC architecture incorporating split-gate photothermoelectric graphene photodetectors. Our design extends operation toλ = 5.2 μm with a Johnson noise-limited noise-equivalent power of 1.1 nW/Hz1/2, no fall-off in photoresponse up tof = 1 MHz, and a predicted 3-dB bandwidth off3dB > 1 GHz. This mid-IR PIC platform readily extends to longer wavelengths and opens the door to applications from distributed gas sensing and portable dual comb spectroscopy to weather-resilient free space optical communications.

    more » « less
  2. Two dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) are promising for optical modulation, detection, and light emission since their material properties can be tuned on-demand via electrostatic doping1–21. The optical properties of TMDs have been shown to change drastically with doping in the wavelength range near the excitonic resonances22–26. However, little is known about the effect of doping on the optical properties of TMDs away from these resonances, where the material is transparent and therefore could be leveraged in photonic circuits. Here, we probe the electro-optic response of monolayer TMDs at near infrared (NIR) wavelengths (i.e. deep in the transparency regime), by integrating them on silicon nitride (SiN) photonic structures to induce strong light -matter interaction with the monolayer. We dope the monolayer to carrier densities of (7.2 ± 0.8) × 1013 cm-2, by electrically gating the TMD using an ionic liquid [P14+] [FAP-]. We show strong electro-refractive response in monolayer tungsten disulphide (WS2) at NIR wavelengths by measuring a large change in the real part of refractive index ∆n = 0.53, with only a minimal change in the imaginary part ∆k = 0.004. We demonstrate photonic devices based on electrostatically gated SiN-WS2 phase modulator with high efficiency ( ) of 0.8 V · cm. We show that the induced phase change relative to the change in absorption (i.e. ∆n/∆k) is approximately 125, that is significantly higher than the ones achieved in 2D materials at different spectral ranges and in bulk materials, commonly employed for silicon photonic modulators such as Si and III-V on Si, while accompanied by negligible insertion loss. Efficient phase modulators are critical for enabling large-scale photonic systems for applications such as Light Detection and Ranging (LIDAR), phased arrays, optical switching, coherent optical communication and quantum and optical neural networks27–30. 
    more » « less
  3. Performance of photonic devices critically depends upon their efficiency on controlling the flow of light therein. In the recent past, the implementation of plasmonics, two-dimensional (2D) materials and metamaterials for enhanced light-matter interaction (through concepts such as sub-wavelength light confinement and dynamic wavefront shape manipulation) led to diverse applications belonging to spectroscopy, imaging and optical sensing etc. While 2D materials such as graphene, MoS2 etc., are still being explored in optical sensing in last few years, the application of plasmonics and metamaterials is limited owing to the involvement of noble metals having a constant electron density. The capability of competently controlling the electron density of noble metals is very limited. Further, due to absorption characteristics of metals, the plasmonic and metamaterial devices suffer from large optical loss. Hence, the photonic devices (sensors, in particular) require that an efficient dynamic control of light at nanoscale through field (electric or optical) variation using substitute low-loss materials. One such option may be plasmonic metasurfaces. Metasurfaces are arrays of optical antenna-like anisotropic structures (sub-wavelength size), which are designated to control the amplitude and phase of reflected, scattered and transmitted components of incident light radiation. The present review put forth recent development on metamaterial and metastructure-based various sensors. 
    more » « less
  4. Abstract

    Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalcogenide-based non-volatile phase-change materials (PCMs) could mitigate these problems thanks to their strong index modulation and zero static power consumption, they often suffer from large absorptive loss, low cyclability, and lack of multilevel operation. Here, we report a wide-bandgap PCM antimony sulfide (Sb2S3)-clad silicon photonic platform simultaneously achieving low loss (<1.0 dB), high extinction ratio (>10 dB), high cyclability (>1600 switching events), and 5-bit operation. These Sb2S3-based devices are programmed via on-chip silicon PIN diode heaters within sub-ms timescale, with a programming energy density of$$\sim 10\,{fJ}/n{m}^{3}$$~10fJ/nm3. Remarkably, Sb2S3is programmed into fine intermediate states by applying multiple identical pulses, providing controllable multilevel operations. Through dynamic pulse control, we achieve 5-bit (32 levels) operations, rendering 0.50 ± 0.16 dB per step. Using this multilevel behavior, we further trim random phase error in a balanced Mach-Zehnder interferometer.

    more » « less
  5. Abstract

    Hybrid organic inorganic perovskite solar cells based on CH3NH3PbI3have drastically increased in efficiency over the past several years and are competitive with decades‐old photovoltaic materials such as CdTe. Despite this impressive increase, significant issues still remain due to the intrinsic instability of CH3NH3PbI3which degrades into carcinogenic PbI2. Recently, double halide perovskites which use a pair of 1+–3+cations to replace Pb2+, such as Cs2InSbI6, and chalcogenide perovskites, such as BaZrS3, have been explored as potential replacements. In this work, double chalcogenide perovskites are explored to identify novel photovoltaic absorbers that can replace CH3NH3PbI3. Due to the large space of possible compounds, machine learning methods are used to classify materials as potential photovoltaic absorbers using data from the periodic table, eliminating wasteful computation. A random forest algorithm achieves a cross‐validation accuracy of 86.4% on the constructed data set. Over 450 possible replacements are identified via traditional and statistical methods with Ba2AlNbS6, Ba2GaNbS6, Ca2GaNbS6, Sr2InNbS6, and Ba2SnHfS6as the most promising alternative when thermodynamic stability, kinetic stability, and optical absorption are considered.

    more » « less