skip to main content


Title: ShinyGO: a graphical gene-set enrichment tool for animals and plants
Abstract Motivation

Gene lists are routinely produced from various omic studies. Enrichment analysis can link these gene lists with underlying molecular pathways and functional categories such as gene ontology (GO) and other databases.

Results

To complement existing tools, we developed ShinyGO based on a large annotation database derived from Ensembl and STRING-db for 59 plant, 256 animal, 115 archeal and 1678 bacterial species. ShinyGO’s novel features include graphical visualization of enrichment results and gene characteristics, and application program interface access to KEGG and STRING for the retrieval of pathway diagrams and protein–protein interaction networks. ShinyGO is an intuitive, graphical web application that can help researchers gain actionable insights from gene-sets.

Availability and implementation

http://ge-lab.org/go/.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
NSF-PAR ID:
10130349
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Protein function prediction, based on the patterns of connection in a protein–protein interaction (or association) network, is perhaps the most studied of the classical, fundamental inference problems for biological networks. A highly successful set of recent approaches use random walk-based low-dimensional embeddings that tend to place functionally similar proteins into coherent spatial regions. However, these approaches lose valuable local graph structure from the network when considering only the embedding. We introduce GLIDER, a method that replaces a protein–protein interaction or association network with a new graph-based similarity network. GLIDER is based on a variant of our previous GLIDE method, which was designed to predict missing links in protein–protein association networks, capturing implicit local and global (i.e. embedding-based) graph properties.

    Results

    GLIDER outperforms competing methods on the task of predicting GO functional labels in cross-validation on a heterogeneous collection of four human protein–protein association networks derived from the 2016 DREAM Disease Module Identification Challenge, and also on three different protein–protein association networks built from the STRING database. We show that this is due to the strong functional enrichment that is present in the local GLIDER neighborhood in multiple different types of protein–protein association networks. Furthermore, we introduce the GLIDER graph neighborhood as a way for biologists to visualize the local neighborhood of a disease gene. As an application, we look at the local GLIDER neighborhoods of a set of known Parkinson’s Disease GWAS genes, rediscover many genes which have known involvement in Parkinson’s disease pathways, plus suggest some new genes to study.

    Availability and implementation

    All code is publicly available and can be accessed here: https://github.com/kap-devkota/GLIDER.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract

    Gene set enrichment analysis (GSEA) plays an important role in large-scale data analysis, helping scientists discover the underlying biological patterns over-represented in a gene list resulting from, for example, an ‘omics’ study. Gene Ontology (GO) annotation is the most frequently used classification mechanism for gene set definition. Here we present a new GSEA tool, PANGEA (PAthway, Network and Gene-set Enrichment Analysis; https://www.flyrnai.org/tools/pangea/), developed to allow a more flexible and configurable approach to data analysis using a variety of classification sets. PANGEA allows GO analysis to be performed on different sets of GO annotations, for example excluding high-throughput studies. Beyond GO, gene sets for pathway annotation and protein complex data from various resources as well as expression and disease annotation from the Alliance of Genome Resources (Alliance). In addition, visualizations of results are enhanced by providing an option to view network of gene set to gene relationships. The tool also allows comparison of multiple input gene lists and accompanying visualisation tools for quick and easy comparison. This new tool will facilitate GSEA for Drosophila and other major model organisms based on high-quality annotated information available for these species.

     
    more » « less
  3. Abstract Motivation

    Tumor tissue samples often contain an unknown fraction of stromal cells. This problem is widely known as tumor purity heterogeneity (TPH) was recently recognized as a severe issue in omics studies. Specifically, if TPH is ignored when inferring co-expression networks, edges are likely to be estimated among genes with mean shift between non-tumor- and tumor cells rather than among gene pairs interacting with each other in tumor cells. To address this issue, we propose Tumor Specific Net (TSNet), a new method which constructs tumor-cell specific gene/protein co-expression networks based on gene/protein expression profiles of tumor tissues. TSNet treats the observed expression profile as a mixture of expressions from different cell types and explicitly models tumor purity percentage in each tumor sample.

    Results

    Using extensive synthetic data experiments, we demonstrate that TSNet outperforms a standard graphical model which does not account for TPH. We then apply TSNet to estimate tumor specific gene co-expression networks based on TCGA ovarian cancer RNAseq data. We identify novel co-expression modules and hub structure specific to tumor cells.

    Availability and implementation

    R codes can be found at https://github.com/petraf01/TSNet.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Motivation

    The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale molecular and functional interaction networks. The connectivity of these networks provides a rich source of information for inferring functional annotations for genes and proteins. An important challenge has been to develop methods for combining these heterogeneous networks to extract useful protein feature representations for function prediction. Most of the existing approaches for network integration use shallow models that encounter difficulty in capturing complex and highly non-linear network structures. Thus, we propose deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of proteins from multiple heterogeneous interaction networks.

    Results

    We apply this method to combine STRING networks to construct a common low-dimensional representation containing high-level protein features. We use separate layers for different network types in the early stages of the multimodal autoencoder, later connecting all the layers into a single bottleneck layer from which we extract features to predict protein function. We compare the cross-validation and temporal holdout predictive performance of our method with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our method outperforms previous methods for both human and yeast STRING networks. We also show substantial improvement in the performance of our method in predicting gene ontology terms of varying type and specificity.

    Availability and implementation

    deepNF is freely available at: https://github.com/VGligorijevic/deepNF.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    Gene annotation is the problem of mapping proteins to their functions represented as Gene Ontology (GO) terms, typically inferred based on the primary sequences. Gene annotation is a multi-label multi-class classification problem, which has generated growing interest for its uses in the characterization of millions of proteins with unknown functions. However, there is no standard GO dataset used for benchmarking the newly developed new machine learning models within the bioinformatics community. Thus, the significance of improvements for these models remains unclear.

    Results

    The Gene Benchmarking database is the first effort to provide an easy-to-use and configurable hub for the learning and evaluation of gene annotation models. It provides easy access to pre-specified datasets and takes the non-trivial steps of preprocessing and filtering all data according to custom presets using a web interface. The GO bench web application can also be used to evaluate and display any trained model on leaderboards for annotation tasks.

    Availability and implementation

    The GO Benchmarking dataset is freely available at www.gobench.org. Code is hosted at github.com/mofradlab, with repositories for website code, core utilities and examples of usage (Supplementary Section S.7).

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less