Using a 1D Lagrangian code specifically designed to assess the impact of multiple, time-resolved supernovae (SNe) from a single-star cluster on the surrounding medium, we test three commonly used feedback recipes: delayed cooling (e.g. used in the gasoline-2 code), momentum-energy injection (a resolution-dependent transition between momentum-dominated feedback and energy-dominated feedback used, e.g. in the fire-2 code), and simultaneous energy injection (e.g. used in the EAGLE simulations). Our work provides an intermediary test for these recipes: we analyse a setting that is more complex than the simplified scenarios for which many were designed, but one more controlled than a full galactic simulation. In particular, we test how well these models reproduce the enhanced momentum efficiency seen for an 11 SN cluster simulated at high resolution (0.6 pc; a factor of 12 enhancement relative to the isolated SN case) when these subgrid recipes are implemented in low resolution (20 pc) runs. We find that: (1) the delayed cooling model performs well – resulting in 9 times the momentum efficiency of the fiducial isolated SN value – when SNe are clustered and 1051 erg are injected per SN, while clearly overpredicting the momentum efficiency in the single SN test case; (2) the momentum-energy model always more »
- Publication Date:
- NSF-PAR ID:
- 10130374
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 492
- Issue:
- 1
- Page Range or eLocation-ID:
- p. 1243-1256
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We present a suite of high-resolution simulations of an isolated dwarf galaxy using four different hydrodynamical codes: Gizmo , Arepo , Gadget , and Ramses . All codes adopt the same physical model, which includes radiative cooling, photoelectric heating, star formation, and supernova (SN) feedback. Individual SN explosions are directly resolved without resorting to subgrid models, eliminating one of the major uncertainties in cosmological simulations. We find reasonable agreement on the time-averaged star formation rates as well as the joint density–temperature distributions between all codes. However, the Lagrangian codes show significantly burstier star formation, larger SN-driven bubbles, and stronger galactic outflows compared to the Eulerian code. This is caused by the behavior in the dense, collapsing gas clouds when the Jeans length becomes unresolved: Gas in Lagrangian codes collapses to much higher densities than that in Eulerian codes, as the latter is stabilized by the minimal cell size. Therefore, more of the gas cloud is converted to stars and SNe are much more clustered in the Lagrangian models, amplifying their dynamical impact. The differences between Lagrangian and Eulerian codes can be reduced by adopting a higher star formation efficiency in Eulerian codes, which significantly enhances SN clustering in themore »
-
Abstract Momentum feedback from isolated supernova remnants (SNRs) have been increasingly recognized by modern cosmological simulations as a resolution-independent means to implement the effects of feedback in galaxies, such as turbulence and winds. However, the integrated momentum yield from SNRs is uncertain due to the effects of SN clustering and interstellar medium (ISM) inhomogeneities. In this paper, we use spatially resolved observations of the prominent 10 kpc star-forming ring of M31 to test models of mass-weighted ISM turbulence driven by momentum feedback from isolated, nonoverlapping SNRs. We use a detailed stellar age distribution (SAD) map from the Panchromatic Hubble Andromeda Treasury survey, observationally constrained SN delay-time distributions, and maps of the atomic and molecular hydrogen to estimate the mass-weighted velocity dispersion using the Martizzi et al. ISM turbulence model. Our estimates are within a factor of two of the observed mass-weighted velocity dispersion in most of the ring, but exceed observations at densities ≲0.2 cm −3 and SN rates >2.1 × 10 −4 SN yr −1 kpc −2 , even after accounting for plausible variations in SAD models and ISM scale height assumptions. We conclude that at high SN rates the momentum deposited is most likely suppressed by the nonlinearmore »
-
Context. Recent developments in time domain astronomy, such as Zwicky Transient Facility (ZTF), have made it possible to conduct daily scans of the entire visible sky, leading to the discovery of hundreds of new transients every night. Among these detections, 10 to 15 of these objects are supernovae (SNe), which have to be classified prior to cosmological use. The spectral energy distribution machine (SEDM) is a low-resolution ( ℛ ~ 100) integral field spectrograph designed, built, and operated with the aim of spectroscopically observing and classifying targets detected by the ZTF main camera. Aims. As the current pysedm pipeline can only handle isolated point sources, it is limited by contamination when the transient is too close to its host galaxy core. This can lead to an incorrect typing and ultimately bias the cosmological analyses, affecting the homogeneity of the SN sample in terms of local environment properties. We present a new scene modeler to extract the transient spectrum from its structured background, with the aim of improving the typing efficiency of the SEDM. Methods. H yper G al is a fully chromatic scene modeler that uses archival pre-transient photometric images of the SN environment to generate a hyperspectral model ofmore »
-
Abstract The quenching “maintenance” and “cooling flow” problems are important from the Milky Way through massive cluster elliptical galaxies. Previous work has shown that some source of energy beyond that from stars and pure magnetohydrodynamic processes is required, perhaps from AGN, but even the qualitative form of this energetic input remains uncertain. Different scenarios include thermal “heating,” direct wind or momentum injection, cosmic ray heating or pressure support, or turbulent “stirring” of the intra-cluster medium (ICM). We investigate these in 1012 − 1014 M⊙ halos using high-resolution non-cosmological simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, including simplified toy energy-injection models, where we arbitrarily vary the strength, injection scale, and physical form of the energy. We explore which scenarios can quench without violating observational constraints on energetics or ICM gas. We show that turbulent stirring in the central ∼100 kpc, or cosmic-ray injection, can both maintain a stable low-SFR halo for >Gyr timescales with modest energy input, by providing a non-thermal pressure which stably lowers the core density and cooling rates. In both cases, associated thermal-heating processes are negligible. Turbulent stirring preserves cool-core features while mixing condensed core gas into the hotter halo and is by far the mostmore »
-
Context. The inclusion of molecular physics is an important piece that tends to be missing from the puzzle when modeling the spectra of supernovae (SNe). Molecules have both a direct impact on the spectra, particularly in the infrared, and an indirect one as a result of their influence on certain physical conditions, such as temperature. Aims. In this paper, we aim to investigate molecular formation and non-local thermodynamic equilibrium (NLTE) cooling, with a particular focus on CO, the most commonly detected molecule in supernovae. We also aim to determine the dependency of supernova chemistry on physical parameters and the relative sensitivity to rate uncertainties. Methods. We implemented a chemical kinetic description of the destruction and formation of molecules into the SN spectral synthesis code SUMO . In addition, selected molecules were coupled into the full NLTE level population framework and, thus, we incorporated molecular NLTE cooling into the temperature equation. We produced a test model of the CO formation in SN 1987A between 150 and 600 days and investigated the sensitivity of the resulting molecular masses to the input parameters. Results. We find that there is a close inter-dependency between the thermal evolution and the amount of CO formed, mainlymore »