skip to main content


Title: A distance–performance trade‐off in the phenotypic basis of dispersal
Abstract

Across taxa, individuals vary in how far they disperse, with most individuals staying close to their origin and fewer dispersing long distances. Costs associated with dispersal (e.g., energy, risk) are widely believed to trade off with benefits (e.g., reduced competition, increased reproductive success) to influence dispersal propensity. However, this framework has not been applied to understand variation in dispersal distance, which is instead generally attributed to extrinsic environmental factors. We alternatively hypothesized that variation in dispersal distances results from trade‐offs associated with other aspects of locomotor performance. We tested this hypothesis in the stream salamanderGyrinophilus porphyriticusand found that salamanders that dispersed farther in the field had longer forelimbs but swam at slower velocities under experimental conditions. The reduced swimming performance of long‐distance dispersers likely results from drag imposed by longer forelimbs. Longer forelimbs may facilitate moving longer distances, but the proximate costs associated with reduced swimming performance may help to explain the rarity of long‐distance dispersal. The historical focus on environmental drivers of dispersal distances misses the importance of individual traits and associated trade‐offs among traits affecting locomotion.

 
more » « less
Award ID(s):
1655653 1637685
NSF-PAR ID:
10459185
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
9
Issue:
18
ISSN:
2045-7758
Page Range / eLocation ID:
p. 10644-10653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dispersal evolves as an adaptive mechanism to optimize individual fitness across the landscape. Specifically, dispersal represents a mechanism to escape fitness costs resulting from changes in environmental conditions. Decades of empirical work suggest that individuals use local habitat cues to make movement decisions, but theory predicts that dispersal can also evolve as a fixed trait, independent of local conditions, in environments characterized by a history of stochastic spatiotemporal variation. Until now, however, both conditional and fixed models of dispersal evolution have primarily been evaluated using emigration data (stay vs. leave), and not dispersal distances: a more comprehensive measure of dispersal. Our goal was to test whether conditional or fixed models of dispersal evolution predict variation in dispersal distance in the stream salamanderGyrinophilus porphyriticus.We quantified variation in habitat conditions using measures of salamander performance from 4 yr of spatially explicit, capture–mark–recapture (CMR) data across three headwater streams in the Hubbard Brook Experimental Forest in central New Hampshire, USA. We used body condition as an index of local habitat quality that individuals may use to make dispersal decisions, and survival probability estimated from multistate CMR models as an index of mortality risk resulting from the long‐term history of environmental variation. We found that dispersal distances increased with declining survival probability, indicating that salamanders disperse further in risky environments. Dispersal distances were unrelated to spatial variation in body condition, suggesting that salamanders do not base dispersal distance decisions on local habitat quality. Our study provides the first empirical support for fixed models of dispersal evolution, which predict that dispersal evolves in response to a history of spatiotemporal environmental variation, rather than as a conditional response to current habitat conditions. More broadly, this study underscores the value of assessing alternative scales of environmental variation to gain a more complete and balanced understanding of dispersal evolution.

     
    more » « less
  2. Abstract

    Animal movement at localised scales is often modulated by competing pressures such as avoiding predators while acquiring resources and mates. The relative magnitude of these trade‐offs may affect males and females differently, often resulting in sex‐specific differences in movement.

    Sex‐biases in movement have been linked to mating systems (e.g. monogamy or polygamy) in birds and mammals; however, this relationship has received less attention among fishes. Using passive integrated transponder tags and a series of stationary antennas, we evaluated the movement dynamics of a small‐bodied, sexually dimorphic stream fishFundulus olivaceusover a 30‐day period in a fourth‐order tributary to the Pascagoula River in Mississippi (U.S.A.).

    We documented dissimilar sex‐specific movement behaviours at different spatial scales that were likely to be facilitated by differential resource demands and competitive pressures. Females exhibited an increased propensity to engage in longer, exploratory moves (>30 m); whereas most males remained active within an established territory, making few long‐distance longitudinal movements.

    Local activity levels (proportion of individuals moving) were positively related to density (manipulated during the study), and density was found to affect the magnitude of sex‐specific movement. In contrast to females, males increased local activity and movement distance at the reduced density, presumably to expand territory size or mate‐searching behaviours, suggesting local mate competition may suppress the movement distance of males.

    Despite some evidence substantiating a relationship between movement and mating system, our results suggest that the documented sex‐specific differences may be related to traits that co‐evolve with mating systems, rather than the mating system per se. Our findings also highlight the importance of spatial scale when evaluating patterns of sex‐biased movement tendencies.

     
    more » « less
  3. Abstract

    Natural selection drives the evolution of traits to optimize organismal performance, but optimization of one aspect of performance can influence other aspects of performance. Here, we asked how phenotypic variation between locally adapted fish populations affects locomotion and ventilation, testing for functional trade‐offs and trait–performance correlations. Specifically, we investigated two populations of livebearing fish (Poecilia mexicana) that inhabit distinct habitat types (hydrogen‐sulphide‐rich springs and adjacent nonsulphidic streams). For each individual, we quantified different metrics of burst swimming during simulated predator attacks, steady swimming and gill ventilation. Coinciding with predictions, we documented significant population differences in all aspects of performance, with fish from sulphidic habitats exhibiting higher steady swimming performance and higher ventilation capacity, but slower burst swimming. There was a significant functional trade‐off between steady and burst swimming, but not between different aspects of locomotion and ventilation. Although our findings about population differences in locomotion performance largely parallel the results from previous studies, we provide novel insights about how morphological variation might impact ventilation and ultimately oxygen acquisition. Overall, our analyses provided insights into the functional consequences of previously documented phenotypic variation, which will help to disentangle the effects of different sources of selection that may coincide along complex environmental gradients.

     
    more » « less
  4. Abstract

    Long‐distance migrations are among the most physically demanding feats animals perform. Understanding the potential costs and benefits of such behaviour is a fundamental question in ecology and evolution. A hypothetical cost of migration should be outweighed by higher productivity and/or higher annual survival, but few studies on migratory species have been able to directly quantify patterns of survival throughout the full annual cycle and across the majority of a species’ range.

    Here, we use telemetry data from 220 migratory Egyptian vulturesNeophron percnopterus, tracked for 3,186 bird months and across approximately 70% of the species’ global distribution, to test for differences in survival throughout the annual cycle.

    We estimated monthly survival probability relative to migration and latitude using a multi‐event capture–recapture model in a Bayesian framework that accounted for age, origin, subpopulation and the uncertainty of classifying fates from tracking data.

    We found lower survival during migration compared to stationary periods (β = −0.816; 95% credible interval: −1.290 to −0.318) and higher survival on non‐breeding grounds at southern latitudes (<25°N;β = 0.664; 0.076–1.319) compared to on breeding grounds. Survival was also higher for individuals originating from Western Europe (β = 0.664; 0.110–1.330) as compared to further east in Europe and Asia, and improved with age (β = 0.030; 0.020–0.042). Anthropogenic mortalities accounted for half of the mortalities with a known cause and occurred mainly in northern latitudes. Many juveniles drowned in the Mediterranean Sea on their first autumn migration while there were few confirmed mortalities in the Sahara Desert, indicating that migration barriers are likely species‐specific.

    Our study advances the understanding of important fitness trade‐offs associated with long‐distance migration. We conclude that there is lower survival associated with migration, but that this may be offset by higher non‐breeding survival at lower latitudes. We found more human‐caused mortality farther north, and suggest that increasing anthropogenic mortality could disrupt the delicate migration trade‐off balance. Research to investigate further potential benefits of migration (e.g. differential productivity across latitudes) could clarify how migration evolved and how migrants may persist in a rapidly changing world.

     
    more » « less
  5. Abstract

    Age and environment are important determinants of reproductive parameters in long‐lived organisms. These factors may interact to determine breeding responses to environmental change, yet few studies have examined the environmental dependence of aging patterns across the entire life span. We do so, using a 20‐yr longitudinal data set of reproductive phenotypes in long‐lived female Nazca boobies (Sula granti), a monogamous seabird breeding in the eastern tropical Pacific. Young and old females may suffer from inexperience and senescence, respectively, and/or practice reproductive restraint. Breeding performance (for breeding participation, breeding date, clutch size, egg volume, and offspring production) was expected to be lower in these age classes, particularly under environmental challenge, in comparison with middle‐aged breeders. Sea surface temperature anomalies (SSTA) represented interannual variation in the El Niño–Southern Oscillation (ENSO) and were one proxy for environmental quality (a population count of clutch initiations was a second). Although only females lay eggs, both sexes care for eggs and nestlings, and the male partner’s age, alone or in interaction with female age, was evaluated as a predictor of breeding performance. Middle‐aged females performed better than young and old birds for all reproductive traits. Pairing with a young male delayed breeding (particularly for old females) and reduced clutch size, and pairing with an old male reduced offspring production. Challenging environments increased age effects on breeding probability and breeding date across young to middle ages and for offspring production across middle to old ages. However, important exceptions to the predicted patterns for clutch size and fledging success across young to middle ages suggested that trade‐offs between fitness components may complicate patterns of trait expression across the life span. Relationships between breeding participation, environment, and individual quality and/or experience in young females may also contribute to unexpected patterns for clutch size and fledging success, traits expressed only in breeders. Finally, independent of age, breeding responses of female Nazca boobies to the ENSO did not follow expectations derived from oceanic forcing of primary productivity. During El Niño‐like conditions, egg‐laying traits (clutch size, breeding date) improved, but offspring production declined, whereas La Niña‐like conditions were “poor” environments throughout the breeding cycle.

     
    more » « less