skip to main content


Title: Noninvasive measurement of mucosal immunity in a free‐ranging baboon population
Abstract

Ecoimmunological patterns and processes remain understudied in wild primates, in part because of the lack of noninvasive methods to measure immunity. Secretory immunoglobulin A (sIgA) is the most abundant antibody present at mammalian mucosal surfaces and provides an important first line of defense against pathogens. Recent studies show that sIgA can be measured noninvasively in feces and is a good marker of mucosal immunity. Here we validated a commercial ELISA kit to measure fecal IgA in baboons, tested the robustness of its results to variation in collection and storage conditions, and developed a cost‐effective in‐house ELISA for baboon fecal IgA. Using data from the custom ELISA, we assessed the relationship between fecal IgA concentrations and gastrointestinal parasite burden, and tested how sex, age, and reproductive effort predict fecal IgA in wild baboons. We find that IgA concentrations can be measured in baboon feces using an in‐house ELISA and are highly correlated to the values obtained with a commercial kit. Fecal IgA concentrations are stable when extracts are stored for up to 22 months at −20°C. Fecal IgA concentrations were negatively correlated with parasite egg counts (Trichuris trichiura), but not parasite richness. Fecal IgA did not vary between the sexes, but for males, concentrations were higher in adults versus adolescents. Lactating females had significantly lower fecal IgA than pregnant females, but neither pregnant nor lactating female concentrations differed significantly from cycling females. Males who engaged in more mate‐guarding exhibited similar IgA concentrations to those who engaged in little mate‐guarding. These patterns may reflect the low energetic costs of mucosal immunity, or the complex dependence of IgA excretion on individual condition. Adding a noninvasive measure of mucosal immunity will promote a better understanding of how ecology modulates possible tradeoffs between the immune system and other energetically costly processes in the wild.

 
more » « less
NSF-PAR ID:
10130632
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Primatology
Volume:
82
Issue:
2
ISSN:
0275-2565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As fecal steroid methods increasingly are used by researchers to monitor the physiology of captive and wild populations, we need to expand our validation protocols to test the effects of procedural variation and to identify contamination by exogenous sources of steroid hormones. Mammalian carnivore feces often contain large amounts of hair from the prey they consume, which itself may contain high concentrations of hormones. In this study, we report first a validation of two steroid hormone antibodies, corticosterone and progesterone, to determine fecal concentrations of these hormones in wild spotted hyenas (Crocuta crocuta). Next, we expand on these standard validation protocols to test two additional metrics: (i) whether hair from consumed prey or (ii) the specific drying method (oven incubation vs. lyophilization) affect steroid hormone concentrations in feces. In the first biological validation for the progesterone antibody in this species, progesterone concentrations met our expectations: (i) concentrations of plasma and fecal progesterone were lowest in immature females, higher in lactating females, and highest in pregnant females; (ii) across pregnant females, fecal progesterone concentrations were highest during late pregnancy; and (iii) among lactating females, fecal progesterone concentrations were highest after parturition. Our additional validation experiments indicated that contamination with prey hair and drying method are hormone-specific. Although prey hair did not release hormones into samples during storage or extraction for either hormone, its presence appeared to “dilute” progesterone (but not corticosterone) measures indirectly by increasing the dry weight of samples. In addition, fecal progesterone, but not corticosterone, values were lower for lyophilized than for incubated samples. Therefore, in addition to the standard analytical and biological validation steps, additional methodological variables need to be tested whenever we measure fecal hormone concentrations, particularly from predatory mammals.

     
    more » « less
  2. Abstract Objectives

    A core assumption of life history theory and the immunocompetence handicap hypothesis (ICHH) is that testosterone (T) upregulates energetic investment in mating effort at the expense of immunity. This tenet, along with observed positive relationships between estrogens and immunity, may contribute to the higher observed morbidity and mortality of males. In the present study, we examine the association between sex steroid hormones and mucosal immunity as well as sex differences in immunity in a rural Amazonian population of immune‐challenged Bolivian adolescents.

    Methods

    Salivary steroid hormones (T [males only] and estradiol [E2, females only]), Tsimane‐specific age‐standardized BMI z‐scores, and salivary mucosal immunity (sIgA, secretory IgA) were measured in 89 adolescent males and females.

    Results

    Males had significantly higher sIgA levels than females, which may be due to the observed immune‐endocrine associations found in the present study. Controlling for age and phenotypic condition, higher T significantly predicted higher sIgA; whereas higher E2was associated with lower sIgA in females.

    Conclusions

    Results stood in contrast to common interpretations of the ICHH, that is, that T should be inversely associated with immunity. Findings from the present study support the notion that the endocrine system likely affects immunity in a regulatory fashion, upregulating certain aspects of immunity while downregulating others. An important remaining question is the adaptive reason(s) for sex differences in endocrine‐mediated immuno‐redistribution.

     
    more » « less
  3. Abstract Objectives

    In many taxa, adverse early‐life environments are associated with reduced growth and smaller body size in adulthood. However, in wild primates, we know very little about whether, where, and to what degree trajectories are influenced by early adversity, or which types of early adversity matter most. Here, we use parallel‐laser photogrammetry to assess inter‐individual predictors of three measures of body size (leg length, forearm length, and shoulder‐rump length) in a population of wild female baboons studied since birth.

    Materials and Methods

    Using >2000 photogrammetric measurements of 127 females, we present a cross‐sectional growth curve of wild female baboons (Papio cynocephalus) from juvenescence through adulthood. We then test whether females exposed to several important sources of early‐life adversity—drought, maternal loss, low maternal rank, or a cumulative measure of adversity—were smaller for their age than females who experienced less adversity. Using the “animal model,” we also test whether body size is heritable in this study population.

    Results

    Prolonged early‐life drought predicted shorter limbs but not shorter torsos (i.e., shoulder‐rump lengths). Our other measures of early‐life adversity did not predict variation in body size. Heritability estimates for body size measures were 36%–67%. Maternal effects accounted for 13%–17% of the variance in leg and forearm length, but no variance in torso length.

    Discussion

    Our results suggest that baboon limbs, but not torsos, grow plastically in response to maternal effects and energetic early‐life stress. Our results also reveal considerable heritability for all three body size measures in this study population.

     
    more » « less
  4. Abstract

    For energetically limited organisms, life‐history theory predicts trade‐offs between reproductive effort and somatic maintenance. This is especially true of female mammals, for whom reproduction presents multifarious energetic and physiological demands.

    Here, we examine longitudinal changes in the gut virome (viral community) with respect to reproductive status in wild mature female chimpanzeesPan troglodytes schweinfurthiifrom two communities, Kanyawara and Ngogo, in Kibale National Park, Uganda.

    We used metagenomic methods to characterize viromes of individual chimpanzees while they were cycling, pregnant and lactating.

    Females from Kanyawara, whose territory abuts the park's boundary, had higher viral richness and loads (relative quantity of viral sequences) than females from Ngogo, whose territory is more energetically rich and located farther from large human settlements. Viral richness (total number of distinct viruses per sample) was higher when females were lactating than when cycling or pregnant. In pregnant females, viral richness increased with estimated day of gestation. Richness did not vary with age, in contrast to prior research showing increased viral abundance in older males from these same communities.

    Our results provide evidence of short‐term physiological trade‐offs between reproduction and infection, which are often hypothesized to constrain health in long‐lived species.

     
    more » « less
  5. Abstract

    Gut microbiomes encode myriad metabolic functions critical to mammalian ecology and evolution. While fresh fecal samples provide an efficient, noninvasive method of sampling gut microbiomes, collecting fresh feces from elusive species is logistically challenging. Nonfresh feces, however, may not accurately represent the gut microbiome of the host due to succession of gut microbial consortia postdefecation as well as colonization by microbes from the surrounding environment. Using American mink (Neovison vison) as a model species, we examined postdefecation microbial community succession to learn how ambient temperature and temporal sampling constraints influence the reliability of nonfresh feces to represent host gut microbiomes. To achieve our goal, we analyzed fresh mink feces (n = 5 females; n = 5 males) collected at the time of defecation from captive mink at a farm in the Upper Peninsula of Michigan and we subsequently subsampled each fecal specimen to investigate microbial community succession over five days, under both warm (21°C) and cold (–17°C to –1°C) temperature treatments. We found that both temperature and time influenced fecal microbiome composition; and we also detected significant sexual dimorphism in microbial community structures, with female mink microbiomes exhibiting significantly greater variation than males’ when exposed to the warm temperature treatment. Our results demonstrate that feces from unknown individuals can be a powerful tool for examining carnivore gut microbiomes, though rigorous study design is required because sex, ambient temperature, and time since defecation drive significant microbial variation and the sample size requirements necessary for detecting statistically significant differences between target populations is an important consideration for future ecologically meaningful research.

     
    more » « less