skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification

We present the design and construction of an all-fiber high-power optical parametric chirped-pulse amplifier working at 1700 nm, an important wavelength for bio-photonics and medical treatments. The laser delivers 1.42 W of output average power at 1700 nm, which corresponds to ∼40 nJ pulse energy. The pulse can be de-chirped with a conventional grating pair compressor to ∼450 fs. Furthermore, the laser has a stable performance with relative intensity noise typically below the -130 dBc/Hz level for the idler pulses at 1700 nm from 10kHz to 16.95 MHz, half of the laser repetition ratef/2.

 
more » « less
NSF-PAR ID:
10131006
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
28
Issue:
2
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 2317
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The advent of chirped-pulse amplification in the 1980s and femtosecond Ti:sapphire lasers in the 1990s enabled transformative advances in intense laser–matter interaction physics. Whereas most of experiments have been conducted in the limited near-infrared range of 0.8–1 μm, theories predict that many physical phenomena such as high harmonic generation in gases favor long laser wavelengths in terms of extending the high-energy cutoff. Significant progress has been made in developing few-cycle, carrier-envelope phase-stabilized, high-peak-power lasers in the 1.6–2 μm range that has laid the foundation for attosecond X ray sources in the water window. Even longer wavelength lasers are becoming available that are suitable to study light filamentation, high harmonic generation, and laser–plasma interaction in the relativistic regime. Long-wavelength lasers are suitable for sub-bandgap strong-field excitation of a wide range of solid materials, including semiconductors. In the strong-field limit, bulk crystals also produce high-order harmonics. In this review, we first introduce several important wavelength scaling laws in strong-field physics, then describe recent breakthroughs in short- (1.4–3 μm), mid- (3–8 μm), and long-wave (8–15 μm) infrared laser technology, and finally provide examples of strong-field applications of these novel lasers. Some of the broadband ultrafast infrared lasers will have profound effects on medicine, environmental protection, and national defense, because their wavelengths cover the water absorption band, the molecular fingerprint region, as well as the atmospheric infrared transparent window.

     
    more » « less
  2. We measure the nonlinear index of refraction (n2) and investigate plasma dynamics in flexible Corning® Willow® Glass using single-shot Frequency Domain Holography (FDH). Flexible glass has received a lot of attention recently due to various applications such as 3-D photonics and wearable devices. Femtosecond laser micromachining (FLM) is a viable tool to fabricate these devices because of minimal thermal effects and thus enables fabrication of small and clean 3-D structures. To control and understand the underlying dynamics of FLM, ultrafast visualization of plasma and optical Kerr effect is important. FDH is a robust femtosecond time-resolved technique in which chirped reference and probe pulses centered at 404 nm are used to measure and visualize the plasma and Kerr effect produced by an intense, ultrashort pump pulse centered at 808 nm. Using FDH, we study laser-matter interactions in Willow Glass and measure its n2 to be 3.41 +/-0.08 ×10-16 cm2/W and visualize the plasma dynamics. 
    more » « less
  3. Abstract With the invention of chirped pulse amplification for lasers in the mid-1980s, high power ultrafast lasers entered into the world as a disruptive tool, with potential impact on a broad range of application areas. Since then, ultrafast lasers have revolutionized laser–matter interaction and unleashed their potential applications in manufacturing processes. With unprecedented short pulse duration and high laser intensity, focused optical energy can be delivered to precisely define material locations on a time scale much faster than thermal diffusion to the surrounding area. This unique characteristic has fundamentally changed the way laser interacts with matter and enabled numerous manufacturing innovations over the past few decades. In this paper, an overview of ultrafast laser technology with an emphasis on femtosecond laser is provided first, including its development, type, working principle, and characteristics. Then, ultrafast laser applications in manufacturing processes are reviewed, with a focus on micro/nanomachining, surface structuring, thin film scribing, machining in bulk of materials, additive manufacturing, bio manufacturing, super high resolution machining, and numerical simulation. Both fundamental studies and process development are covered in this review. Insights gained on ultrafast laser interaction with matter through both theoretical and numerical researches are summarized. Manufacturing process innovations targeting various application areas are described. Industrial applications of ultrafast laser-based manufacturing processes are illustrated. Finally, future research directions in ultrafast laser-based manufacturing processes are discussed. 
    more » « less
  4. Chirped pulse amplification (CPA) and subsequent nonlinear optical (NLO) systems constitute the backbone of myriad advancements in semiconductor manufacturing, communications, biology, defense, and beyond. Accurately and efficiently modeling CPA+NLO-based laser systems is challenging because of the complex coupled processes and diverse simulation frameworks. Our modular start-to-end model unlocks the potential for exciting new optimization and inverse design approaches reliant on data-driven machine learning methods, providing a means to create tailored CPA+NLO systems unattainable with current models. To demonstrate this new, to our knowledge, technical capability, we present a study on the LCLS-II photo-injector laser, representative of a high-power and spectro-temporally non-trivial CPA+NLO system.

     
    more » « less
  5. Laser-induced refractive index change (LIRIC) is being developed as a non-invasive way to alter optical properties of transparent, ophthalmic materials including corneasex vivoandin vivo. This study examined the optical and biological effects of blue-LIRIC (wavelengths 400–405 nm) ofex-vivorabbit corneas. Following LIRIC treatment at low and high repetition rates (8.3 MHz and 80 MHz, respectively), we interferometrically measured optical phase change, obtained transmission electron microscopy (TEM) micrographs, and stained histological sections with collagen hybridizing peptides (CHP) to assess the structural and organizational changes caused by LIRIC at different repetition rates. Finally, we performed power and scan speed scaling experiments at three different repetition rates (1 MHz, 8.3 MHz, and 80 MHz) to study their impact on LIRIC efficacy. Histologic co-localization of CHP and LIRIC-generated green autofluorescence signals suggested that collagen denaturation had occurred in the laser-irradiated region. TEM imaging showed different ultrastructural modifications for low and high repetition rate writing, with discrete homogenization of collagen fibrils at 80 MHz, as opposed to contiguous homogenization at 8.3 MHz. Overall, this study confirmed that LIRIC efficacy can be dramatically increased, while still avoiding tissue ablation, by lowering the repetition rate from 80 MHz to 8.3 MHz. Modeling suggests that this is due to a higher, single-pulse, energy density deposition at given laser powers during 8.3 MHz LIRIC.

     
    more » « less