Hybrids account for nearly all commercially planted varieties of maize and many other crop plants because crosses between inbred lines of these species produce first-generation [F1] offspring that greatly outperform their parents. The mechanisms underlying this phenomenon, called heterosis or hybrid vigor, are not well understood despite over a century of intensive research. The leading hypotheses—which focus on quantitative genetic mechanisms (dominance, overdominance, and epistasis) and molecular mechanisms (gene dosage and transcriptional regulation)—have been able to explain some but not all of the observed patterns of heterosis. Abiotic stressors are known to impact the expression of heterosis; however, the potential role of microbes in heterosis has largely been ignored. Here, we show that heterosis of root biomass and other traits in maize is strongly dependent on the belowground microbial environment. We found that, in some cases, inbred lines perform as well by these criteria as their F1offspring under sterile conditions but that heterosis can be restored by inoculation with a simple community of seven bacterial strains. We observed the same pattern for seedlings inoculated with autoclaved versus live soil slurries in a growth chamber and for plants grown in steamed or fumigated versus untreated soil in the field. In a different field site, however, soil steaming increased rather than decreased heterosis, indicating that the direction of the effect depends on community composition, environment, or both. Together, our results demonstrate an ecological phenomenon whereby soil microbes differentially impact the early growth of inbred and hybrid maize.
more »
« less
Evapotranspiration and water use efficiency of continuous maize and maize and soybean in rotation in the upper Midwest U.S.
More Like this
-
-
The genetic and molecular basis of heterosis has long been studied but without a consensus about mechanism. The opposite effect, inbreeding depression, results from repeated self-pollination and leads to a reduction in vigor. A popular explanation for this reaction is the homozygosis of recessive, slightly deleterious alleles upon inbreeding. However, extensive studies in alfalfa indicated that inbreeding between diploids and autotetraploids was similar despite the fact that homozygosis of alleles would be dramatically different. The availability of tetraploid lines of maize generated directly from various inbred lines provided the opportunity to examine this issue in detail in perfectly matched diploid and tetraploid hybrids and their parallel inbreeding regimes. Identical hybrids at the diploid and tetraploid levels were inbred in triplicate for seven generations. At the conclusion of this regime, F1 hybrids and selected representative generations (S1, S3, S5, S7) were characterized phenotypically in randomized blocks during the same field conditions. Quantitative measures of the multiple generations of inbreeding provided little evidence for a distinction in the decline of vigor between the diploids and the tetraploids. The results suggest that the homozygosis of completely recessive, slightly deleterious alleles is an inadequate hypothesis to explain inbreeding depression in general.more » « less
-
Regulation of gene expression is a fundamental biological process that relies on transcription factors (TF) recognizing specific cis motifs in the regulatory regions of the genes that they control. In most eukaryotic organisms, cis-regulatory elements are significantly enriched around the transcription start site (TSS). However, different from other genic features, TSSs need to be experimentally determined, becoming then important components of genome annotations. One of the methods for experimentally determining TSSs at the genome-wide level is CAGE (cap analysis of gene expression). This chapter describes how to prepare a CAGE library for sequencing, starting with RNA extraction, library construction, and quality controls before proceed to sequencing in the Illumina platform. We then describe how to use a computational pipeline to determine, from the alignment of CAGE tags, the genome-wide location of TSSs, followed with statistical approaches required to cluster TSSs that operate as transcriptional units, and to determine core promoter properties such as shape. The analyses described here focus on maize, since its large and yet deficiently annotated genome creates some unique challenges, but with some modifications can be easily adopted for other organisms as well.more » « less
An official website of the United States government

