skip to main content


Title: Facile Synthesis of Pd−Cu Bimetallic Twin Nanocubes and a Mechanistic Understanding of the Shape Evolution
Abstract

This paper presents a facile synthesis of Cu twin cubes, with a yield ofca. 70%, from seeds based on Pd hexagonal nanoplates. The lattice mismatch, capping agent, and number of planar defects in the seeds all play important roles in directing the shape evolution of Cu on the Pd seeds. Initially, the Cu atoms are only deposited on one of the two basal planes of a Pd nanoplate in the form of small islands. As the growth continues, Cu {100} facets developed in the presence of hexadecylamine and Cl, two capping agents with selectivity towards the Cu(100) surface. When switched to Pd triangular nanoplates, Cu right bipyramids instead of cubes are obtained and only three {100} facets are created from each side of the seed. Atomic‐resolution transmission electron microscopy analysis indicates that the correspondence between the type of the seed and the shape of the final product can be attributed to the number of planar defects along the vertical direction of the plate‐like seed, with two and one twin planes corresponding to cube and right bipyramid, respectively. By adjusting the experimental condition, this synthetic method can also be extended to Pd−Ag and other bimetallic systems.

 
more » « less
Award ID(s):
1804970
NSF-PAR ID:
10131074
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemNanoMat
Volume:
6
Issue:
3
ISSN:
2199-692X
Page Range / eLocation ID:
p. 386-391
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This article describes a systematic study of the oxidative etching and regrowth behaviors of Pd nanocrystals, including single‐crystal cubes bounded by {100} facets, single‐crystal octahedra and tetrahedra enclosed by {111} facets; and multiple‐twinned icosahedra covered by {111} facets and twin boundaries. During etching, Pd atoms are preferentially oxidized and removed from the corners regardless of the type of nanocrystal, and the resultant Pd2+ions are then reduced back to elemental Pd. For cubes and icosahedra, the newly formed Pd atoms are deposited on the {100} facets and twin boundaries, respectively, due to their relatively higher energies. For octahedra and tetrahedra, the Pd atoms self‐nucleate in the solution phase, followed by their growth into small particles. We can control the regrowth rate relative to etching rate by varying the concentration of HCl in the reaction solution. As the concentration of HCl is increased, 18‐nm Pd cubes are transformed into octahedra of 23, 18, and 13 nm, respectively, in edge length. Due to the absence of regrowth, however, Pd octahedra are transformed into truncated octahedra, cuboctahedra, and spheres with decreasing sizes whereas Pd tetrahedra evolve into truncated tetrahedra and spheres. In contrast, Pd icosahedra with twin boundaries on the surface are converted to asymmetric icosahedra, flower‐like icosahedra, and spheres. This work not only advances the understanding of etching and growth behaviors of metal nanocrystals with various shapes and twin structures but also offers an alternative method for controlling their shape and size.

     
    more » « less
  2. Abstract

    This study uses density functional theory calculations to explore the energetics and electronic structures of planar defects in monoclinicβ‐Ga2O3, including twin boundaries (TBs) and stacking faults (SFs). TBs on the (001)A, (001)B, (100)A, (100)B, and (−102) planes are examined; it is found that (100)A has a very low formation energy (0.01 Jm2), consistent with its observation in a number of experiments. For SFs, SFs on the (100) plane have much lower energy (0.03 Jm2) than SFs formed on the (010) and (001) planes. Growth on a (100) surface is thus expected to result in more planar‐defect formation, again consistent with experimental observations. In spite of their higher energies, TBs and SFs on planes other than (100) have been experimentally observed in epitaxial layers. Their origins are explained in terms of coalescence of different growth regions when the growth direction changes, or when low‐energy TBs on the growing surface lead to domains with different twinning orientation.

     
    more » « less
  3. Abstract

    In situ and operando spectroscopic and microscopic methods were used to gain insight into the correlation between the structure, chemical state, and reactivity of size‐ and shape‐controlled ligand‐free Cu nanocubes during CO2electroreduction (CO2RR). Dynamic changes in the morphology and composition of Cu cubes supported on carbon were monitored under potential control through electrochemical atomic force microscopy, X‐ray absorption fine‐structure spectroscopy and X‐ray photoelectron spectroscopy. Under reaction conditions, the roughening of the nanocube surface, disappearance of the (100) facets, formation of pores, loss of Cu and reduction of CuOxspecies observed were found to lead to a suppression of the selectivity for multi‐carbon products (i.e. C2H4and ethanol) versus CH4. A comparison with Cu cubes supported on Cu foils revealed an enhanced morphological stability and persistence of CuIspecies under CO2RR in the former samples. Both factors are held responsible for the higher C2/C1product ratio observed for the Cu cubes/Cu as compared to Cu cubes/C. Our findings highlight the importance of the structure of the active nanocatalyst but also its interaction with the underlying substrate in CO2RR selectivity.

     
    more » « less
  4. Abstract

    In situ and operando spectroscopic and microscopic methods were used to gain insight into the correlation between the structure, chemical state, and reactivity of size‐ and shape‐controlled ligand‐free Cu nanocubes during CO2electroreduction (CO2RR). Dynamic changes in the morphology and composition of Cu cubes supported on carbon were monitored under potential control through electrochemical atomic force microscopy, X‐ray absorption fine‐structure spectroscopy and X‐ray photoelectron spectroscopy. Under reaction conditions, the roughening of the nanocube surface, disappearance of the (100) facets, formation of pores, loss of Cu and reduction of CuOxspecies observed were found to lead to a suppression of the selectivity for multi‐carbon products (i.e. C2H4and ethanol) versus CH4. A comparison with Cu cubes supported on Cu foils revealed an enhanced morphological stability and persistence of CuIspecies under CO2RR in the former samples. Both factors are held responsible for the higher C2/C1product ratio observed for the Cu cubes/Cu as compared to Cu cubes/C. Our findings highlight the importance of the structure of the active nanocatalyst but also its interaction with the underlying substrate in CO2RR selectivity.

     
    more » « less
  5. null (Ed.)
    The selectivity towards a specific C 2+ product, such as ethylene (C 2 H 4 ), is sensitive to the surface structure of copper (Cu) catalysts in carbon dioxide (CO 2 ) electro-reduction. The fundamental understanding of such sensitivity can guide the development of advanced electrocatalysts, although it remains challenging at the atomic level. Here we demonstrated that planar defects, such as stacking faults, could drive the electrocatalysis of CO 2 -to-C 2 H 4 conversion with higher selectivity and productivity than Cu(100) facets in the intermediate potential region (−0.50 ∼ −0.65 V vs. RHE). The unique right bipyramidal Cu nanocrystals containing a combination of (100) facets and a set of parallel planar defects delivered 67% faradaic efficiency (FE) for C 2 H 4 and a partial current density of 217 mA cm −2 at −0.63 V vs. RHE. In contrast, Cu nanocubes with exclusive (100) facets exhibited only 46% FE for C 2 H 4 and a partial current density of 87 mA cm −2 at an identical potential. Both ex situ CO temperature-programmed desorption and in situ Raman spectroscopy analysis implied that the stronger *CO adsorption on planar defect sites facilitates CO generation kinetics, which contributes to a higher surface coverage of *CO and in turn an enhanced reaction rate of C–C coupling towards C 2+ products, especially C 2 H 4 . 
    more » « less