- Award ID(s):
- 1749742
- NSF-PAR ID:
- 10131176
- Date Published:
- Journal Name:
- APL materials
- Volume:
- 7
- ISSN:
- 2166-532X
- Page Range / eLocation ID:
- 030902
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Two-dimensional (2D) atomic layer materials have attracted a great deal of attention due to their superior chemical, physical, and electronic properties, and have demonstrated excellent performance in various applications such as energy storage devices, catalysts, sensors, and transistors. Nevertheless, the cost-effective and large-scale production of high-quality 2D materials is critical for practical applications and progressive development in the industry. Electrochemical exfoliation is a recently introduced technique for the facile, environmentally friendly, fast, large-scale production of 2D materials. In this review, we summarize recent advances in different types of electrochemical exfoliation methods for efficiently preparing 2D materials, along with the characteristics of each method, and then introduce their applications as electrode materials for energy storage devices. Finally, the remaining challenges and prospects for developing the electrochemical exfoliation process of 2D materials for energy storage devices are discussed.more » « less
-
Abstract MXenes are 2D materials with relatively high surface areas, high electrical conductivities, functional transition metal surfaces, tunable surface chemistries, and solution processability. Due to these properties, 2D MXenes have attracted widespread attention as electrode materials for energy storage devices, including electrochemical capacitors, with high power and energy densities. However, many studies have shown that the electrochemical performance of MXene electrodes is considerably affected by their structure and morphology. These properties are, for the most part, controlled by the method used for the assembly of 2D MXene flakes and the electrode fabrication methods. A successful electrode assembly and fabrication method should address several challenges, such as the restacking of 2D flakes, to achieve electrode structures and morphologies that deliver high ionic transport properties, electrical conductivity, and mechanical stability. This review aims to provide insight into the current state‐of‐the‐art assembly and fabrication methods used to design and fabricate high performance electrodes based on MXenes. The major challenges to be addressed and possible future directions in the fabrication of MXene electrodes for practical energy storage applications are highlighted.
-
The third industrial revolution has brought mankind into the information age. The development of information storage materials has played a key role in this transformation. Such materials have seen use in many application areas, including computing, logistics, and medicine. Information storage materials run the gamut from magnetic information storage media to molecular-based information storage materials. Among these, fluorescent-based information storage materials are of particular interest due to their unique properties, including an ability to store information with high levels of security, maintain mechanical stability, and respond to appropriately chosen external stimuli. In this review, we focus on recent advances involving the preparation and study of fluorescent materials-based information storage codes. For organisational purposes, these codes are treated according to the dimensionality of the code system in question, namely 1D-, 2D-, and 3D-type codes. The present review is designed to provide a succinct summary of what has been accomplished in the area, while outlining existing challenges and noting directions for future development.more » « less
-
Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.more » « less
-
Hydrous transition metal oxides (TMOs) are redox-active materials that confine structural water within their bulk, organized in 1D, 2D, or 3D networks. In an electrochemical cell, hydrous TMOs can interact with electrolyte species not only via their outer surface but also via their hydrous inner surface, which can transport electrolyte species to the interior of the material. Many TMOs operating in an aqueous electrochemical environment transform to hydrous TMOs, which then serve as the electrochemically active phase. This review summarizes the physicochemical properties of hydrous TMOs and recent mechanistic insights into their behavior in electrochemical reactions of interest for energy storage, conversion, and environmental applications. Particular focus is placed on first-principles calculations and operando characterization to obtain an atomistic view of their electrochemical mechanisms. Hydrous TMOs represent an important class of energy and environmental materials in aqueous and nonaqueous environments. Further understanding of their interaction with electrolyte species is likely to yield advancements in electrochemical reactivity and kinetics for energy and environmental applications.more » « less