skip to main content


Title: The EDGE–CALIFA survey: using optical extinction to probe the spatially resolved distribution of gas in nearby galaxies
ABSTRACT

We present an empirical relation between the cold gas surface density (Σgas) and the optical extinction (AV) in a sample of 103 galaxies from the Extragalactic Database for Galaxy Evolution (EDGE) survey. This survey provides CARMA interferometric CO observations for 126 galaxies included in the Calar Alto Legacy Integral Field Area (CALIFA) survey. The matched, spatially resolved nature of these data sets allows us to derive the Σgas–AV relation on global, radial, and kpc (spaxel) scales. We determine AV from the Balmer decrement (H α/H β). We find that the best fit for this relation is $\Sigma _{\rm gas}\,(\rm {M_\odot \,pc}^{-2}) \sim 26 \times {\rm \mathit{ A}_\mathit{ V}} \,(\rm mag)$, and that it does not depend on the spatial scale used for the fit. However, the scatter in the fits increases as we probe smaller spatial scales, reflecting the complex relative spatial distributions of stars, gas, and dust. We investigate the Σgas/AV ratio on radial and spaxel scales as a function of $\mathrm{EW(H\,\alpha)}$. We find that at larger values of $\mathrm{EW({H\,\alpha })}$ (i.e. actively star-forming regions) this ratio tends to converge to twice the value expected for a foreground dust screen geometry (∼30 $\mathrm{M_{\odot } \, pc^{-2} \, mag^{-1}}$). On radial scales, we do not find a significant relation between the Σgas/AV ratio and the ionized gas metallicity. We contrast our estimates of Σgas using AV with compilations in the literature of the gas fraction on global and radial scales as well as with well-known scaling relations such as the radial star formation law and the Σgas–Σ* relation. These tests show that optical extinction is a reliable proxy for estimating Σgas in the absence of direct sub/millimeter observations of the cold gas.

 
more » « less
NSF-PAR ID:
10131301
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
492
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2651-2662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We introduce the thesan project, a suite of large volume ($L_\mathrm{box} = 95.5 \, \mathrm{cMpc}$) radiation-magnetohydrodynamic simulations that simultaneously model the large-scale statistical properties of the intergalactic medium during reionization and the resolved characteristics of the galaxies responsible for it. The flagship simulation has dark matter and baryonic mass resolutions of $3.1 \times 10^6\, {\rm M_\odot }$ and $5.8 \times 10^5\, {\rm M_\odot }$, respectively. The gravitational forces are softened on scales of 2.2 ckpc with the smallest cell sizes reaching 10 pc at z = 5.5, enabling predictions down to the atomic cooling limit. The simulations use an efficient radiation hydrodynamics solver (arepo-rt) that precisely captures the interaction between ionizing photons and gas, coupled to well-tested galaxy formation (IllustrisTNG) and dust models to accurately predict the properties of galaxies. Through a complementary set of medium resolution simulations we investigate the changes to reionization introduced by different assumptions for ionizing escape fractions, varying dark matter models, and numerical convergence. The fiducial simulation and model variations are calibrated to produce realistic reionization histories that match the observed evolution of the global neutral hydrogen fraction and electron scattering optical depth to reionization. They also match a wealth of high-redshift observationally inferred data, including the stellar-to-halo-mass relation, galaxy stellar mass function, star formation rate density, and the mass–metallicity relation, despite the galaxy formation model being mainly calibrated at z = 0. We demonstrate that different reionization models give rise to varied bubble size distributions that imprint unique signatures on the 21 cm emission, especially on the slope of the power spectrum at large spatial scales, enabling current and upcoming 21 cm experiments to accurately characterize the sources that dominate the ionizing photon budget.

     
    more » « less
  2. ABSTRACT

    Radio-loud active galactic nuclei (RLAGNs) are a unique AGN population and were thought to be preferentially associated with supermassive black holes (SMBHs) at low accretion rates. They could impact the host galaxy evolution by expelling cold gas through the jet-mode feedback. In this work, we studied CO(6−5) line emission and continuum emission in a high-redshift radio galaxy, MRC 0152−209, at z = 1.92 using ALMA (Atacama Large Millimeter/submillimeter Array) up to a 0.024″ resolution (corresponding to ∼200 pc at z = 1.92). This system is a starburst major merger comprising two galaxies: the north-west (NW) galaxy hosting the RLAGN with jet kinetic power Ljet ≳ 2 × 1046  erg s−1 and the other galaxy to the south-east (SE). Based on the spectral energy distribution fitting for the entire system (NW+SE galaxies), we find an AGN bolometric luminosity LAGN, bol ∼ 3 × 1046  erg s−1 with a lower limit of ∼0.9 × 1046  erg s−1 for the RLAGN. We estimate the black hole mass through MBH–M⋆ scaling relations and find an Eddington ratio of λEdd ∼ 0.07–4 conservatively by adopting the lower limit of LAGN, bol and considering the dispersion of the scaling relation. These results suggest that the RLAGN is radiatively efficient and the powerful jets could be launched from a super-Eddington accretion disc. ALMA Cycle 6 observations further reveal a massive (${M}_\mathrm{H_2}=(1.1-2.3)\times 10^9\ \rm M_\odot$), compact (∼500 pc), and monopolar molecular outflow perpendicular to the jet axis. The corresponding mass outflow rate ($1200^{+300}_{-300}-2600^{+600}_{-600}\ \mathrm{M_\odot }\ \rm yr^{-1}$) is comparable with the star formation rate of at least $\sim 2100\ \mathrm{M_\odot }\ \rm yr^{-1}$. Depending on the outflowing molecular gas mass, the outflow kinetic power/LAGN, bol ratio of ∼0.008–0.02, and momentum boost factor of ∼3–24 agree with a radiative-mode AGN feedback scenario. On the other hand, the jets can also drive the molecular outflow within its lifetime of ∼2 × 105 yr without additional energy supply from AGN radiation. The jet-mode feedback is then capable of removing all cold gas from the host galaxy through the long-term, episodic launching of jets. Our study reveals a unique object where starburst activity, powerful jets, and rapid BH growth co-exist, which may represent a fundamental stage of AGN-host galaxy co-evolution.

     
    more » « less
  3. ABSTRACT We analyse the rest-optical emission-line ratios of z ∼ 1.5 galaxies drawn from the Multi-Object Spectrometer for Infra-Red Exploration Deep Evolution Field (MOSDEF) survey. Using composite spectra, we investigate the mass–metallicity relation (MZR) at z ∼ 1.5 and measure its evolution to z = 0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z ∼ 1.5 to z = 0 depends on stellar mass, evolving by $\Delta \rm log(\rm O/H) \sim 0.25$ dex at M*< $10^{9.75}\, \mathrm{M}_{\odot }$ down to $\Delta \rm log(\rm O/H) \sim 0.05$ at M* ≳ $10^{10.5}\, \mathrm{M}_{\odot }$. In contrast, the O3N2-based MZR shows a constant offset of $\Delta \rm log(\rm O/H) \sim 0.30$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z ∼ 1.5 sample. We investigated the secondary dependence of the MZR on star formation rate (SFR) by measuring correlated scatter about the mean M*-specific SFR and M*−$\log (\rm O3N2)$ relations. We find an anticorrelation between $\log (\rm O/H)$ and sSFR offsets, indicating the presence of a M*−SFR−Z relation, though with limited significance. Additionally, we find that our z ∼ 1.5 stacks lie along the z = 0 metallicity sequence at fixed μ = log (M*/M⊙) − 0.6 × $\log (\rm SFR / M_{\odot } \, yr^{-1})$ suggesting that the z ∼ 1.5 stacks can be described by the z = 0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [N ii]/H α scales with galaxy properties is crucial to accurately describe the effects of blended [N ii] and H α on redshift and H α fiux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope. 
    more » « less
  4. ABSTRACT We present the second data release for the H i-MaNGA programme of H i follow-up observations for the SDSS-IV MaNGA survey. This release contains measurements for 3669 unique galaxies, combining 2108 Green Bank Telescope observations with an updated crossmatch of the MaNGA sample with the ALFALFA survey. We combine these data with MaNGA spectroscopic measurements to examine relationships between H i-to-stellar mass ratio (${\rm M_{H\, {\small I}}/{M_*}}$) and average ISM/star formation properties probed by optical emission lines. ${\rm M_{H\, {\small I}}/{M_*}}$ is very weakly correlated with the equivalent width of H α, implying a loose connection between the instantaneous star formation rate and the H i reservoir, although the link between ${\rm M_{H\, {\small I}}/{M_*}}$ and star formation strengthens when averaged even over only moderate time-scales (∼30 Myr). Galaxies with elevated H i depletion times have enhanced [O i]/H α and depressed H α surface brightness, consistent with more H i residing in a diffuse and/or shock-heated phase that is less capable of condensing into molecular clouds. Of all optical lines, ${\rm M_{H\, {\small I}}/{M_*}}$ correlates most strongly with oxygen equivalent width, EW(O), which is likely a result of the existing correlation between ${\rm M_{H\, {\small I}}/{M_*}}$ and gas-phase metallicity. Residuals in the ${\rm M_{H\, {\small I}}/{M_*}}$−EW(O) relation are again correlated with [O i]/H α and H α surface brightness, suggesting they are also driven by variations in the fraction of diffuse and/or shock-heated gas. We recover the strong anticorrelation between ${\rm M_{H\, {\small I}}/{M_*}}$ and gas-phase metallicity seen in previous studies. We also find a relationship between ${\rm M_{H\, {\small I}}/{M_*}}$ and [O i]6302/H α, suggesting that higher fractions of diffuse and/or shock-heated gas are more prevalent in gas-rich galaxies. 
    more » « less
  5. ABSTRACT It remains a major challenge to derive a theory of cloud-scale ($\lesssim100$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∼100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically $10\!-\!30\,{\rm Myr}$, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $\Sigma _{\rm H_2}\ge 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $\Sigma _{\rm H_2}\le 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just $1\!-\!5\,{\rm Myr}$ once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4–10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H ii regions are the fundamental units undergoing these lifecycles, with mean separations of $100\!-\!300\,{{\rm pc}}$ in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles. 
    more » « less