skip to main content


Title: Dimethyl Dihydroacridines as Photocatalysts in Organocatalyzed Atom Transfer Radical Polymerization of Acrylate Monomers
Abstract

Development of photocatalysts (PCs) with diverse properties has been essential in the advancement of organocatalyzed atom transfer radical polymerization (O‐ATRP). Dimethyl dihydroacridines are presented here as a new family of organic PCs, for the first time enabling controlled polymerization of challenging acrylate monomers by O‐ATRP. Structure–property relationships for seven PCs are established, demonstrating tunable photochemical and electrochemical properties, and accessing a strongly oxidizing2PC.+intermediate for efficient deactivation. In O‐ATRP, the combination of PC, implementation of continuous‐flow reactors, and promotion of deactivation through addition of LiBr are critical to producing well‐defined acrylate polymers with dispersities as low as 1.12. The utility of this approach is established through demonstration of the oxygen‐tolerance of the system and application to diverse acrylate monomers, including the synthesis of well‐defined di‐ and triblock copolymers.

 
more » « less
NSF-PAR ID:
10131431
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
132
Issue:
8
ISSN:
0044-8249
Page Range / eLocation ID:
p. 3235-3243
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Development of photocatalysts (PCs) with diverse properties has been essential in the advancement of organocatalyzed atom transfer radical polymerization (O‐ATRP). Dimethyl dihydroacridines are presented here as a new family of organic PCs, for the first time enabling controlled polymerization of challenging acrylate monomers by O‐ATRP. Structure–property relationships for seven PCs are established, demonstrating tunable photochemical and electrochemical properties, and accessing a strongly oxidizing2PC.+intermediate for efficient deactivation. In O‐ATRP, the combination of PC, implementation of continuous‐flow reactors, and promotion of deactivation through addition of LiBr are critical to producing well‐defined acrylate polymers with dispersities as low as 1.12. The utility of this approach is established through demonstration of the oxygen‐tolerance of the system and application to diverse acrylate monomers, including the synthesis of well‐defined di‐ and triblock copolymers.

     
    more » « less
  2. Photoinduced organocatalyzed atom-transfer radical polymerization (O-ATRP) is a controlled radical polymerization technique that can be driven using low-energy, visible light and makes use of organic photocatalysts. Limitations of O-ATRP have traditionally included the need for high catalyst loadings (1000 ppm) and the narrow scope of monomers that can be controllably polymerized. Recent advances have shown that N , N -diaryl dihydrophenazine (DHP) organic photoredox catalysts (PCs) are capable of controlling O-ATRP at PC loadings as low as 10 ppm, a significant advancement in the field. In this work we synthesized five new DHP PCs and examined their efficacy in controlling O-ATRP at low ppm catalyst loadings. We found that we were able to polymerize methyl methacrylate at PC loadings as low as 10 ppm (relative to monomer) while producing polymers with dispersities as low as Đ = 1.33 and achieving initiator efficiencies ( I* ) near unity (102%). In addition to applying these PCs in O-ATRP, we carried out a thorough investigation into the structure–property relationships of the new DHP PCs reported herein and report new photophysical characterization data for previously reported DHPs. The insight into the DHP structure–property relationships that we discuss herein will aid in the elucidation of their ability to catalyze O-ATRP at low catalyst loadings. Additionally, this work sheds light on how structural modifications affect certain PC properties with the goal of bolstering our understanding of how to tune PC structures to overcome current limitations in O-ATRP such as the controlled polymerization of challenging monomers. 
    more » « less
  3. Organocatalyzed atom transfer radical polymerization (O-ATRP) is a controlled radical polymerization method mediated by organic photoredox catalysts (PCs) for producing polymers with well-defined structures. While N,N-diaryl dihydrophenazine PCs have successfully produced polymers with low dispersity (Đ < 1.3) in O-ATRP, low initiator efficiencies (I* ∼ 60–80%) indicate an inability to achieve targeted molecular weights and have been attributed to the addition of radicals to the PC core. In this work, we measure the rates of alkyl core substitution (AkCS) to gain insight into why PCs differing in N-aryl group connectivity exhibit differences in polymerization control. Additionally, we evaluate how PC properties evolve during O-ATRP when a non-core-substituted PC is used. PC 1 with 1-naphthyl groups in the N-aryl position resulted in faster AkCS (k1 = 1.21 ± 0.16 × 10–3 s–1, k2 = 2.04 ± 0.11 × 10–3 s–1) and better polymerization control at early reaction times as indicated by plots of molecular weight (number average molecular weight = Mn) vs conversion compared to PC 2 with 2-naphthyl groups (k1 = 6.28 ± 0.38 × 10–4 s–1, k2 = 1.15 ± 0.07 × 10–3 s–1). The differences in rates indicate that N-aryl connectivity can influence polymerization control by changing the rate of AkCS PC formation. The rate of AkCS increased from the initial to the second substitution, suggesting that PC properties are modified by AkCS. Increased PC radical cation (PC•+) oxidation potentials (E1/2 = 0.26–0.27 V vs SCE) or longer triplet excited-state lifetimes (τT1 = 1.4–33 μs) for AkCS PCs 1b and 2b compared to parent PCs 1 and 2 (E1/2 = 0.21–0.22 V vs SCE, τT1 = 0.61–3.3 μs) were observed and may explain changes to PC performance with AkCS. Insight from evaluation of the formation, properties, and performance of AkCS PCs will facilitate their use in O-ATRP and in other PC-driven organic transformations. 
    more » « less
  4. Catalysts are essential for mediating a controlled polymerization in atom transfer radical polymerization (ATRP). Copper-based catalysts are widely explored in ATRP and are highly efficient, leading to well-controlled polymerization of a variety of functional monomers. In addition to copper, iron-based complexes offer new opportunities in ATRP catalysis to develop environmentally friendly, less toxic, inexpensive, and abundant catalytic systems. Despite the high efficiency of iron catalysts in controlling polymerization of various monomers including methacrylates and styrene, ATRP of acrylate-based monomers by iron catalysts still remains a challenge. In this paper, we review the fundamentals and recent advances of iron-catalyzed ATRP focusing on development of ligands, catalyst design, and techniques used for iron catalysis in ATRP. 
    more » « less
  5. null (Ed.)
    ATRP (atom transfer radical polymerization) is one of the most robust reversible deactivation radical polymerization (RDRP) systems. However, the limited oxygen tolerance of conventional ATRP impedes its practical use in an ambient atmosphere. In this work, we developed a fully oxygen-tolerant PICAR (photoinduced initiators for continuous activator regeneration) ATRP process occurring in both water and organic solvents in an open reaction vessel. Continuous regeneration of the oxidized form of the copper catalyst with sodium pyruvate through UV excitation allowed the chemical removal of oxygen from the reaction mixture while maintaining a well-controlled polymerization of N -isopropylacrylamide (NIPAM) or methyl acrylate (MA) monomers. The polymerizations of NIPAM were conducted with 250 ppm (with respect to the monomer) or lower concentrations of CuBr 2 and a tris[2-(dimethylamino)ethyl]amine ligand. The polymers were synthesized to nearly quantitative monomer conversions (>99%), high molecular weights ( M n > 270 000), and low dispersities (1.16 < Đ < 1.44) in less than 30 min under biologically relevant conditions. The reported method provided a well-controlled ATRP ( Đ = 1.16) of MA in dimethyl sulfoxide despite oxygen diffusion from the atmosphere into the reaction system. 
    more » « less