skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative assessment of Antarctic crustal models using numerical wave simulations
The structure of the Antarctic crust is important to our understanding of processes occurring within the Antarctic cryosphere as well as to the Earth’s response to ice mass loss. With the increase in geophysical studies of Antarctica, crustal structure has become much better defined beneath many regions. Several crustal models have been created from seismic-derived and/or gravity-derived data, and some of these models incorporate sets of crustal receiver functions either as a priori constraints or to validate model results. However, receiver function constraints do not exist throughout large regions of Antarctica due to a lack of seismic coverage; given this, we search for additional metrics by which we can compare and contrast Earth models. One approach that has been utilized for other continents is to forward model accurate synthetic waveforms through existing seismic velocity models to identify which models most accurately reproduce seismic waveform datasets. Such waveform datasets may come from accurately determined seismic events or from ambient seismic noise. In an effort to assess existing Antarctic crustal models using a different metric to identify regions where crustal structure is still most uncertain, we have collected a suite of available seismic- and gravity-derived Antarctic crustal models. In the absence of accurately determined ‘ground-truthed’ seismic events in Antarctica, we use a frequency-time normalization approach to extract Rayleigh waves from ambient seismic noise, with periods of 15-55 seconds that are sensitive to crustal structure. We split the observations into two separate validation datasets. The first dataset includes all station-station cross-correlations, with at least one seismic station in each pair that has not been previously used to constrain prior tomographic inversions (a true validation dataset), and the second dataset includes all available station-station cross-correlations, including those that may have been used to constrain some of the models we are testing. We construct sets of Earth models from the available crustal models underlain by two different upper mantle models. We forward model synthetic waveforms using a finite difference approach through each of the Earth models and measure the phase delays between the synthetic waveforms and the ambient seismic noise dataset. Results from our waveform validation study and identification of the poorly characterized regions of Antarctic crust are forthcoming and will be presented.  more » « less
Award ID(s):
1643873
PAR ID:
10131605
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Symposium on Antarctic Earth Science
Volume:
A312
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The thick ice coverage and harsh climatic conditions in East Antarctica hinder detailed investigations of tectonic features, leading to debates regarding the origin and evolution of the Gamburtsev Subglacial Mountains (GSM), the Wilkes Subglacial Basin (WSB), the Aurora Subglacial Basin (ASB), and the Transantarctic Mountains (TAMs). Present tomographic models lack resolution and consistency given the minimal seismic coverage in East Antarctica. To further such investigations, we are using full-waveform ambient noise tomography to model shear-wave velocities and to constrain the crustal and upper mantle structure beneath East Antarctica. This approach utilizes Empirical Green’s functions (EGFs), which provides information about the Earth structure between recording stations and is an alternative approach compared to many traditional tomographic models. EGFs from ambient seismic noise between periods of 15-340 secs are extracted using a frequency-time normalization approach, and synthetic waveforms are simulated through a three-dimensional heterogeneous Earth model using a finite-difference wave propagation method with a grid spacing of 0.025º (~ 2.25 km). Phase delays are computed by cross correlating EGFs and the synthetics, and sensitivity kernels are constructed using a scattering integral approach. Preliminary results show slow velocities beneath both the WSB and ASB, possibly reflecting old rift systems or other inherited tectonic structures. A transition from slow to fast velocities beneath the Northern Victoria Land portion of the TAMs is consistent with thermal loading beneath the mountain range. Slow velocities beneath the GSM may be due to rifting associated with the extended Lambert Rift System. These preliminary results are currently being updated using a larger EGF dataset; our final model will be used to assess East Antarctic tectonic structures and to resolve the ambiguity associated with their origin models. 
    more » « less
  2. East Antarctica is covered by thick sheets of ice and is underlain by stable cratonic lithosphere, extensive mountain ranges, and subglacial basins. The sparse seismic coverage in this region makes it difficult to assess the crustal and mantle structure, which are important to understanding the tectonic evolution of the continent as well as the behavior of the overlying ice sheets. Present tomographic models lack resolution and are often inconsistent with one another; therefore, delineating sub-surface characteristics associated with old rift systems or structures that would allow us to assess the origins of the Wilkes and Aurora subglacial basins, for instance, becomes challenging. To overcome these limitations, we are using a full-waveform tomography method to model the crustal and upper mantle structure in East Antarctica. We have used a frequency-time normalization approach to extract empirical Green’s functions (EGFs) from ambient seismic noise, between periods of 15-340 seconds. The ray path coverage of the EGFs is dense throughout East Antarctica, indicating that our study will provide new, high resolution imaging of this area. Synthetic waveforms are simulated through a three-dimensional heterogeneous Earth model using a finite-difference wave propagation method with a grid spacing of 0.025º (~ 2.25 km), which accurately reproduce Rayleigh waves at 15+ seconds. Following this, phase delays are measured between the synthetics and the data, sensitivity kernels are constructed using a scattering integral approach, and we invert using a sparse, least-squares method. The resulting shear-wave velocity model will be used to assess crustal and upper mantle features, ultimately aimed at resolving whether old rift systems exist within East Antarctica in relation to prominent subglacial basins. Preliminary results will be shared. 
    more » « less
  3. SUMMARY Temporal changes in seismic velocities are an important tool for tracking structural changes within the crust during transient deformation. Although many geophysical processes span the crust, including volcanic unrest and large-magnitude earthquakes, existing methods for seismic monitoring are limited to the shallow subsurface. We present an approach for deep seismic monitoring based on teleseismic receiver functions, which illuminate the crustal velocity structure from the bottom-up. Using synthetic waveform modelling, we show that receiver functions are uniformly sensitive to velocity changes throughout the crust and can locate the depth of the perturbation. We introduce a novel method based on optimal transport for measuring the non-linear time–amplitude signal variations characteristic of receiver function monitoring. We show that optimal transport enables comparison of full waveform distributions rather than relying on representative stacked waveforms. We further study a linearized version of optimal transport that renders time-warping signal variations into simple Euclidean perturbations, and use this capability to perform blind source separation in the space of waveform variations. This disentangles the effects of changes in the source–receiver path from changes in subsurface velocities. Collectively, these methods extend the reach of seismic monitoring to deep geophysical processes, and provide a tool that can be used to study heterogeneous velocity changes with different spatial extents and temporal dynamics. 
    more » « less
  4. Many seismic tomography investigations have imaged the East Antarctic lithosphere as a thick and continuous cratonic structure that is separated from the thinner lithosphere of the adjacent West Antarctic Rift System by the Transantarctic Mountains. However, recent studies have painted a more complicated picture, suggesting, for instance, a separate cratonic fragment beneath Dronning Maud Land and possible lithospheric delamination beneath the southern Transantarctic Mountains. In addition, patterns of intracratonic seismicity have been identified near the Gamburtsev Subglacial Mountains in East Antarctica, indicating possible rift zones in this region. That said, detailed imaging of the subsurface structure has remained challenging given the sparse distribution of seismic stations and the generally low seismicity rate throughout the interior of East Antarctica. Therefore, new approaches that can leverage existing seismic datasets to elucidate the Antarctic cratonic structure are vital. We are utilizing records of ambient seismic noise recorded by numerous temporary, moderate-term, and long-term seismic networks throughout Antarctica to improve the imaging of the lithospheric structure. Empirical Green’s Functions with periods of 40-340 seconds have been extracted using a frequency-time normalization approach, and these data are being used to constrain our full-waveform inversion. A finite-difference approach with a continental-scale, spherical grid is employed to numerically model synthetic seismograms, and a scattering integral method is used to construct the associated sensitivity kernels. Our initial results suggest that some portions of East Antarctica, particularly those beneath the Wilkes Subglacial Basin and the Aurora Basin, may have reduced shear-wave velocities that potentially indicate regions of thinner lithosphere. Further, possible segmentation may be present in the vicinity of the Gamburtsev Subglacial Mountains. Our new tomographic results will allow for further assessment of the East Antarctic tectonic structure and its relation to local seismicity. 
    more » « less
  5. Lateral heterogeneity in the upper mantle beneath Antarctica has important implications to understanding the response of the Earth to changes in ice mass loss and estimates of geothermal heat flow. As seismic coverage and employed methodologies improve, lateral variations have been found in regions that were once assumed to be relatively uniform. Here we present the results from a full-wave inversion constrained by long-period (40-340 s) empirical Green’s functions (EGFs) extracted by using a frequency-time normalization approach and cross-correlating several decades worth of ambient seismic noise. Using the computational resources at the Alabama Supercomputing Authority, we simulate waveforms within a spherical, finite-difference grid. Phase delays are then measured by cross-correlating the EGFs and synthetic waveforms, sensitivity kernels are constructed using the scattering integral method, and the model is iteratively inverted to obtain a refined upper mantle structure. Preliminary results from our continental-scale model not only emphasize lateral variations in West Antarctica that have been observed in some previous models but also highlight distinct mantle anomalies beneath East Antarctica, many of which were previously unresolved. We will present our final model for the whole of Antarctica, illustrating how mantle heterogeneities are associated with different tectonic terranes, providing further constraints for heat flow and ice-sheet modeling. 
    more » « less