skip to main content


Title: Holographic Observations of Centimeter-Scale Nonuniformities within Marine Stratocumulus Clouds
Abstract

Data collected with a holographic instrument [Holographic Detector for Clouds (HOLODEC)] on board the High-Performance Instrumented Airborne Platform for Environmental Research Gulfstream-V (HIAPER GV) aircraft from marine stratocumulus clouds during the Cloud System Evolution in the Trades (CSET) field project are examined for spatial uniformity. During one flight leg at 1190 m altitude, 1816 consecutive holograms were taken, which were approximately 40 m apart with individual hologram dimensions of 1.16 cm × 0.68 cm × 12.0 cm and with droplet concentrations of up to 500 cm−3. Unlike earlier studies, minimally intrusive data processing (e.g., bypassing calculation of number concentrations, binning, and parametric fitting) is used to test for spatial uniformity of clouds on intra- and interhologram spatial scales (a few centimeters and 40 m, respectively). As a means to test this, measured droplet count fluctuations are normalized with the expected standard deviation from theoretical Poisson distributions, which signifies randomness. Despite the absence of trends in the mean concentration, it is found that the null hypothesis of spatial uniformity on both spatial scales can be rejected with compelling statistical confidence. Monte Carlo simulations suggest that weak clustering explains this signature. These findings also hold for size-resolved analysis but with less certainty. Clustering of droplets caused by, for example, entrainment and turbulence, is size dependent and is likely to influence key processes such as droplet growth and thus cloud lifetime.

 
more » « less
Award ID(s):
1823334 1532977 1754244 1639868
NSF-PAR ID:
10131704
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
77
Issue:
2
ISSN:
0022-4928
Page Range / eLocation ID:
p. 499-512
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Droplet-level interactions in clouds are often parameterized by a modified gamma fitted to a “global” droplet size distribution. Do “local” droplet size distributions of relevance to microphysical processes look like these average distributions? This paper describes an algorithm to search and classify characteristic size distributions within a cloud. The approach combines hypothesis testing, specifically, the Kolmogorov–Smirnov (KS) test, and a widely used class of machine learning algorithms for identifying clusters of samples with similar properties: density-based spatial clustering of applications with noise (DBSCAN) is used as the specific example for illustration. The two-sample KS test does not presume any specific distribution, is parameter free, and avoids biases from binning. Importantly, the number of clusters is not an input parameter of the DBSCAN-type algorithms but is independently determined in an unsupervised fashion. As implemented, it works on an abstract space from the KS test results, and hence spatial correlation is not required for a cluster. The method is explored using data obtained from the Holographic Detector for Clouds (HOLODEC) deployed during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) field campaign. The algorithm identifies evidence of the existence of clusters of nearly identical local size distributions. It is found that cloud segments have as few as one and as many as seven characteristic size distributions. To validate the algorithm’s robustness, it is tested on a synthetic dataset and successfully identifies the predefined distributions at plausible noise levels. The algorithm is general and is expected to be useful in other applications, such as remote sensing of cloud and rain properties.

    Significance Statement

    A typical cloud can have billions of drops spread over tens or hundreds of kilometers in space. Keeping track of the sizes, positions, and interactions of all of these droplets is impractical, and, as such, information about the relative abundance of large and small drops is typically quantified with a “size distribution.” Droplets in a cloud interact locally, however, so this work is motivated by the question of whether the cloud droplet size distribution is different in different parts of a cloud. A new method, based on hypothesis testing and machine learning, determines how many different size distributions are contained in a given cloud. This is important because the size distribution describes processes such as cloud droplet growth and light transmission through clouds.

     
    more » « less
  2. Abstract

    Small cumulus clouds over the western United States were measured via airborne instruments during the wildfire season in summer of 2018. Statistics of the sampled clouds are presented and compared to smoke aerosol properties. Cloud droplet concentrations were enhanced in regions impacted by biomass burning smoke, at times exceeding 3,000 cm−3. Images and elemental composition of individual smoke particles and cloud droplet residuals are presented and show that most are dominantly organic, internally mixed with some inorganic elements. Despite their high organic content and relatively low hygroscopicity, on average about half of smoke aerosol particles >80 nm diameter formed cloud droplets. This reduced cloud droplet size in small, smoke‐impacted clouds. A number of complex and competing climatic impacts may result from wide‐spread reductions in cloud droplet size due to wildfires prevalent across the region during summer months.

     
    more » « less
  3. Abstract

    Entrainment and associated mixing (i.e., entrainment‐mixing) have been shown to impact drop size distributions. However, most past studies have focused on warm clouds and have not considered the impacts on mixed phase clouds (i.e., those containing liquid and ice particles). This study characterizes the impacts of entrainment‐mixing on mixed phase cloud properties over the Southern Ocean using in situ observations. By taking advantage of strong correlations between droplet clustering and entrainment‐mixing, a clustering metric is used as a proxy to assess the degree of mixing. This maximizes the available sample size for a statistical analysis of entrainment‐mixing impacts on mixed phase properties. A positive relationship is found between the magnitude of droplet clustering and large ice concentrations (those with maximum dimensions greater than ∼300 μm), suggesting entrainment‐mixing enhances the Wegener‐Bergeron‐Findeisen (WBF) process. Particle size distributions are averaged over different ranges of liquid (liquid water content (LWC)) to total water content (TWC) ratio. Since the ratio is expected to transition from 1 to 0 during glaciation, differences in the distributions provide insight into the relation of entrainment‐mixing to mixed phase cloud evolution. Mixed phase samples with the greatest large ice concentrations occur at LWC/TWC < 0.4 in low clustering regions. However, these samples are relatively few, whereas high clustering regions have a greater frequency of samples with LWC/TWC < 0.4. This suggests sublimation/vapor sinks associated with entrainment can counteract the enhanced WBF. In high clustering regions, distributions of small droplets are relatively constant and large droplets (>30 μm) are preferentially removed as LWC/TWC transitions from 1 to 0.

     
    more » « less
  4. null (Ed.)
    The change in planetary albedo due to aerosol−cloud interactions during the industrial era is the leading source of uncertainty in inferring Earth’s climate sensitivity to increased greenhouse gases from the historical record. The variable that controls aerosol−cloud interactions in warm clouds is droplet number concentration. Global climate models demonstrate that the present-day hemispheric contrast in cloud droplet number concentration between the pristine Southern Hemisphere and the polluted Northern Hemisphere oceans can be used as a proxy for anthropogenically driven change in cloud droplet number concentration. Remotely sensed estimates constrain this change in droplet number concentration to be between 8 cm −3 and 24 cm −3 . By extension, the radiative forcing since 1850 from aerosol−cloud interactions is constrained to be −1.2 W⋅m −2 to −0.6 W⋅m −2 . The robustness of this constraint depends upon the assumption that pristine Southern Ocean droplet number concentration is a suitable proxy for preindustrial concentrations. Droplet number concentrations calculated from satellite data over the Southern Ocean are high in austral summer. Near Antarctica, they reach values typical of Northern Hemisphere polluted outflows. These concentrations are found to agree with several in situ datasets. In contrast, climate models show systematic underpredictions of cloud droplet number concentration across the Southern Ocean. Near Antarctica, where precipitation sinks of aerosol are small, the underestimation by climate models is particularly large. This motivates the need for detailed process studies of aerosol production and aerosol−cloud interactions in pristine environments. The hemispheric difference in satellite estimated cloud droplet number concentration implies preindustrial aerosol concentrations were higher than estimated by most models. 
    more » « less
  5. Marine boundary layer (MBL) clouds are an important, though uncertain, part of Earth’s radiative budget. Previous studies have shown sources of aerosol particles in the remote MBL consist of primary sea spray, the oxidation of organic and inorganic vapors derived from the ocean, entrainment from the free troposphere, and anthropogenic pollution. The potential for these particles to become cloud condensation nuclei (CCN) varies largely dependent on their hygroscopic properties. Furthermore, when clouds form, physical processes can alter the optical properties of the cloud. This dissertation aims to identify variations in aerosol sources that affect MBL CCN concentrations and physical processes throughout the cloud lifetime that influence cloud optical properties. Ambient measurements of marine particles and clouds were made throughout two campaigns in the north Pacific and four campaigns in the north Atlantic. Both clean marine and polluted clouds were sampled. In addition, dry MBL particles were measured to identify their chemical composition and size distribution, which is necessary to identify their potential to be CCN active. The organic hygroscopicity influenced CCN concentrations and cloud optical properties significantly for particles that were mostly organic, such as ship stack and generated smoke particles. For a typical range of organic hygroscopicity the amount of reflected solar radiation varied by 2-7% for polluted conditions and less than 1% for clean conditions. Simulated droplet spectral width was shown to be more representative of observations when using a weighted distribution of cloud base heights and updraft velocities, and increased the cloud reflectivity up to 2%. Cloud top entrainment and decoupling of the MBL were found to account for a decrease in cloud radiative forcing. Cloud top entrainment was corrected for homogeneous entrainment and accounted for a decrease in radiative forcing of up to 50 Wm-2. Clustering of individual marine aerosol particles resulted in the identification of particle types derived from dimethyl-sulfide (DMS) oxidation. Two particle types were identified to come from DMS oxidation products and accounted for approximately 25% and 65% of CCN at 0.1% supersaturation during the winter and summer, respectively. One of the particle types was found to be entrained from the free troposphere. 
    more » « less