skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uniform polynomial rates of convergence for a class of Lévy-driven controlled SDEs arising in multiclass many-server queues
We study the ergodic properties of a class of controlled stochastic differential equations (SDEs) driven by a-stable processes which arise as the limiting equations of multiclass queueing models in the Halfin–Whitt regime that have heavy–tailed arrival processes. When the safety staffing parameter is positive, we show that the SDEs are uniformly ergodic and enjoy a polynomial rate of convergence to the invariant probability measure in total variation, which is uniform over all stationary Markov controls resulting in a locally Lipschitz continuous drift. We also derive a matching lower bound on the rate of convergence (under no abandonment). On the other hand, when all abandonment rates are positive, we show that the SDEs are exponentially ergodic uniformly over the above-mentioned class of controls. Analogous results are obtained for Lévy–driven SDEs arising from multiclass many-server queues under asymptotically negligible service interruptions. For these equations, we show that the aforementioned ergodic properties are uniform over all stationary Markov controls. We also extend a key functional central limit theorem concerning diffusion approximations so as to make it applicable to the models studied here.  more » « less
Award ID(s):
1715210
PAR ID:
10131768
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Stochastic Control, Optimization, and Applications, Yin G., Zhang Q. (eds). The IMA Volumes in Mathematics and its Applications
Volume:
164
Page Range / eLocation ID:
1-20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We study ergodic properties of Markovian multiclass many-server queues that are uniform over scheduling policies and the size of the system. The system is heavily loaded in the Halfin–Whitt regime, and the scheduling policies are work conserving and preemptive. We provide a unified approach via a Lyapunov function method that establishes Foster–Lyapunov equations for both the limiting diffusion and the prelimit diffusion-scaled queuing processes simultaneously. We first study the limiting controlled diffusion and show that if the spare capacity (safety staffing) parameter is positive, the diffusion is exponentially ergodic uniformly over all stationary Markov controls, and the invariant probability measures have uniform exponential tails. This result is sharp because when there is no abandonment and the spare capacity parameter is negative, the controlled diffusion is transient under any Markov control. In addition, we show that if all the abandonment rates are positive, the invariant probability measures have sub-Gaussian tails regardless whether the spare capacity parameter is positive or negative. Using these results, we proceed to establish the corresponding ergodic properties for the diffusion-scaled queuing processes. In addition to providing a simpler proof of previous results in Gamarnik and Stolyar [Gamarnik D, Stolyar AL (2012) Multiclass multiserver queueing system in the Halfin-Whitt heavy traffic regime: asymptotics of the stationary distribution. Queueing Systems 71(1–2):25–51], we extend these results to multiclass models with renewal arrival processes, albeit under the assumption that the mean residual life functions are bounded. For the Markovian model with Poisson arrivals, we obtain stronger results and show that the convergence to the stationary distribution is at an exponential rate uniformly over all work-conserving stationary Markov scheduling policies. 
    more » « less
  2. null (Ed.)
    Abstract We study ergodic properties of a class of Markov-modulated general birth–death processes under fast regime switching. The first set of results concerns the ergodic properties of the properly scaled joint Markov process with a parameter that is taken to be large. Under very weak hypotheses, we show that if the averaged process is exponentially ergodic for large values of the parameter, then the same applies to the original joint Markov process. The second set of results concerns steady-state diffusion approximations, under the assumption that the ‘averaged’ fluid limit exists. Here, we establish convergence rates for the moments of the approximating diffusion process to those of the Markov-modulated birth–death process. This is accomplished by comparing the generator of the approximating diffusion and that of the joint Markov process. We also provide several examples which demonstrate how the theory can be applied. 
    more » « less
  3. A discrete quantum process is represented by a sequence of quantum operations, which are completely positive maps that are not necessarily trace preserving. We consider quantum processes that are obtained by repeated iterations of a quantum operation with noise. Such ergodic quantum processes generalize independent quantum processes. An ergodic theorem describing convergence to equilibrium for a general class of such processes has been recently obtained by Movassagh and Schenker. Under irreducibility and mixing conditions, we obtain a central limit type theorem describing fluctuations around the ergodic limit. 
    more » « less
  4. We studied the dynamical behaviors of degenerate stochastic differential equations (SDEs). We selected an auxiliary Fisher information functional as the Lyapunov functional. Using generalized Fisher information, we conducted the Lyapunov exponential convergence analysis of degenerate SDEs. We derived the convergence rate condition by generalized Gamma calculus. Examples of the generalized Bochner’s formula are provided in the Heisenberg group, displacement group, and Martinet sub-Riemannian structure. We show that the generalized Bochner’s formula follows a generalized second-order calculus of Kullback–Leibler divergence in density space embedded with a sub-Riemannian-type optimal transport metric. 
    more » « less
  5. The past few decades have seen robust research on questions regarding the existence, form, and properties of stationary distributions of stochastically modeled reaction networks. When a stochastic model admits a stationary distribution an important practical question is: what is the rate of convergence of the distribution of the process to the stationary distribution? With the exception of [1] pertaining to models whose state space is restricted to the non-negative integers, there has been a notable lack of results related to this rate of convergence in the reaction network literature. This paper begins the process of filling that hole in our understanding. In this paper, we characterize this rate of convergence, via the mixing times of the processes, for two classes of stochastically modeled reaction networks. Specifically, by applying a Foster-Lyapunov criteria we establish exponential ergodicity for two classes of reaction networks introduced in [2]. Moreover, we show that for one of the classes the convergence is uniform over the initial state. 
    more » « less