Conventional assessment analysis of student results, referred to as rubric‐based assessments (RBA), has emphasized numeric scores as the primary way of communicating information to teachers about their students’ learning. In this light, rethinking and reflecting on not only how scores are generated but also what analyses are done with them to inform classroom practices is of utmost importance. Informed by Systemic Functional Linguistics and Latent Dirichlet Allocation analyses, this study utilizes an innovative bilingual (Spanish–English) constructed response assessment of science and language practices for middle and high school students to perform a multilayered analysis of student responses. We explore multiple ways of looking at students’ performance through their written assessments and discuss features of student responses that are made visible through these analyses. Findings from this study suggest that science educators would benefit from a multidimensional model which deploys complementary ways in which we can interpret student performance. This understanding leads us to think that researchers and developers in the field of assessment need to promote approaches that analyze student science performance as a multilayered phenomenon.
The
- NSF-PAR ID:
- 10132316
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Science Education
- Volume:
- 104
- Issue:
- 3
- ISSN:
- 0036-8326
- Page Range / eLocation ID:
- p. 393-420
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Instructional practices in secondary science: How teachers achieve local and standards‐based success
Abstract This article reports on analyses of the instructional practices of six middle‐ and high‐school science teachers in the United States who participated in a research‐practice partnership that aims to support reform science education goals at scale. All six teachers were well qualified, experienced, and locally successful—respected by students, parents, colleagues, and administrators—but they differed in their success in supporting students' three‐dimensional learning. Our goal is to understand how the teachers' instructional practices contributed to their similarities in achieving local success and to differences in enabling students' learning, and to consider the implications of these findings for research‐practice partnerships. Data sources included classroom videos supplemented by interviews with teachers and focus students and examples of student work. We also compared students' learning gains by teacher using pre–post assessments that elicited three‐dimensional performances. Analyses of classroom videos showed how all six teachers achieved local success—they led effectively managed classrooms, covered the curriculum by teaching almost all unit activities, and assessed students' work in fair and efficient ways. There were important differences, however, in how teachers engaged students in science practices. Teachers in classrooms where students achieved lower learning gains followed a pattern of practice we describe as
activity‐based teaching , in which students completed investigations and hands‐on activities with few opportunities for sensemaking discussions or three‐dimensional science performances. Teachers whose students achieved higher learning gains combined the social stability characteristic of local classroom success with more demanding instructional practices associated withscientific sensemaking andcognitive apprenticeship . We conclude with a discussion of implications for research‐practice partnerships, highlighting how partnerships need to support all teachers in achieving both local and standards‐based success. -
Abstract While research shows that responsive teaching fosters students' disciplinary learning and equitable opportunities for participation, there is yet much to know about how teachers come to be responsive to their students' experiences in the science classroom. In this work, we set out to examine whether and how engaging teachers
as learners in doing science may support responsive instructional practices. We draw on data from a year‐long blended‐online science professional development (PD) program that began with an emphasis on teachers' doing science and progressed to supporting their attention to their students' doing science. By analyzing videos from teachers' classrooms collected throughout the PD, we found that teachers became more stable in attending and responding to their students' thinking. In this article, we present evidence from teachers' reflections that this stability was supported by the teachers' intellectual and emotional experiences as learners. Specifically, we argue that engaging in extended scientific inquiry provided a basis for the teachers havingepistemic empathy for their students—their tuning into and appreciating their students'intellectual andemotional experiences in science, which in turn supported teachers' responsiveness in the classroom. -
null (Ed.)Our research team performed an exploratory analysis of teacher gesturing via a case study of an elementary teacher. We focused on gesturing, a practice found to support both bilingual English learner students’ linguistic development and mathematics achievement, during the teacher’s engineering and science lessons. The research team systematically analyzed teacher video data using McNeill’s gestural dimensions framework and found variation of gesturing types and rates when comparing engineering and baseline science lessons. Additionally, specific types of teacher-gestures appear to be associated with either behavioral or classroom management practices, procedural instructions, and discussion facilitation. We suggest that teacher-gestures such as these have the potential to facilitate bilingual English learners’ language acquisition, while also developing their STEM literacy in general and engineering capacity in particular. Further exploration of teacher-gestures in elementary engineering curricula could lead to an integrated STEM pedagogy that incorporates gesturing as a fundamental teaching strategy, bridging STEM instruction with linguistically responsive instructional practices.more » « less
-
null (Ed.)Abstract Biological field stations (BFSs) are well positioned through their informal STEM (science, technology, engineering, and mathematics) education programs to improve levels of science literacy and support environmental sustainability. A survey of 223 US BFSs revealed that their outreach programs strive to promote conservation and environmental stewardship in addition to disseminating place-based knowledge and/or skills. In this article, we unpack the educational approaches that BFSs use to engage learners, the aspects of science literacy most often addressed, and the perceived learning outcomes. Most notably, the BFSs reported that their participants develop an interest in and excitement for science, increase or change their knowledge of program topics, identify more with the scientific enterprise, and engage in scientific practices. The results indicate opportunities for BFSs to conduct more rigorous assessments of participant learning and program impact. By focusing on learner engagement, science learning, and participant outcomes, BFSs and other place-based informal education venues can expand their efforts and better support conservation and science learning.more » « less