skip to main content


Title: Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries
Atomically dispersed metal catalysts have demonstrated superb electrocatalytic activity because of optimal atom efficiency. However, a rational design of low-cost, high-performance single atom catalysts remains a great challenge due to the elusive chemical reactions of the formation of metal active sites. In this work, biomass hydrogel is prepared as a template for mass production of three-dimensional carbon aerogel-supported single metal atom catalysts. By tailoring the structure of the hydrogel templates, the obtained carbon aerogels exhibit an increase of microporous defects which capture and stabilize isolated metal atoms and minimize aggregation during pyrolysis. Extended X-ray absorption fine structure, Mössbauer spectroscopy, and nitrogen adsorption–desorption isotherm measurements indicate that single metal centers of FeN 4 are formed and embedded within the hierarchical porous carbon frameworks. The obtained composites exhibit outstanding catalytic activity towards oxygen reduction in alkaline media, with a high onset potential of +1.05 V and half-wave potential of +0.88 V, as well as excellent durability. Remarkably, when the carbon aerogels are used as the cathode catalyst in an aluminum–air battery, the battery achieves an ultrahigh open-circuit voltage of 1.81 V, large power density of 181.1 mW cm −2 and stable discharge voltage of 1.70 V at 20 mA cm −2 , markedly better than those with commercial Pt/C as the cathode catalyst.  more » « less
Award ID(s):
1710408 1900235
NSF-PAR ID:
10132532
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
7
Issue:
36
ISSN:
2050-7488
Page Range / eLocation ID:
20840 to 20846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Iron single atom catalysts have emerged as one of the most active electrocatalysts towards the oxygen reduction reaction (ORR), but the unsatisfactory durability and limited activity for the oxygen evolution reaction (OER) has hampered their commercial applications in rechargeable metal–air batteries. By contrast, cobalt-based catalysts are known to afford excellent ORR stability and OER activity, due to the weak Fenton reaction and low OER Gibbs free energy. Herein, a bimetal hydrogel template is used to prepare carbon aerogels containing Fe–Co bimetal sites (NCAG/Fe–Co) as bifunctional electrocatalysts towards both ORR and OER, with enhanced activity and stability, as compared to the monometal counterparts. High-resolution transmission electron microscopy, elemental mapping and X-ray photoelectron spectroscopy measurements demonstrate homogeneous distributions of the metal centers within defected carbon lattices by coordination to nitrogen dopants. X-ray absorption spectroscopic measurements, in combination with other results, suggest the formation of FeN 3 and CoN 3 moieties on mutually orthogonal planes with a direct Fe–Co bonding interaction. Electrochemical measurements show that NCAG/Fe–Co delivers a small ORR/OER potential gap of only 0.64 V at the current density of 10 mA cm −2 , 60 mV lower than that (0.70 V) with commercial Pt/C and RuO 2 catalysts. When applied in a flexible Zn–air battery, the dual-metal NCAG/Fe–Co catalyst also shows a remarkable performance, with a high open-circuit voltage of 1.47 V, a maximum power density of 117 mW cm −2 , as well as good rechargeability and flexibility. Results from this study may offer an ingenious protocol in the design and engineering of highly efficient and durable bifunctional electrocatalysts based on dual metal-doped carbons. 
    more » « less
  2. Rational design of single-metal atom sites in carbon substrates by a flexible strategy is highly desired for the preparation of high-performance catalysts for metal-air batteries. In this study, biomass hydrogel reactors are utilized as structural templates to prepare carbon aerogels embedded with single iron atoms by controlled pyrolysis. The tortuous and interlaced hydrogel chains lead to the formation of abundant nanowrinkles in the porous carbon aerogels, and single iron atoms are dispersed and stabilized within the defective carbon skeletons. X-ray absorption spectroscopy measurements indicate that the iron centers are mostly involved in the coordination structure of FeN 4 , with a minor fraction (ca. 1/5) in the form of FeN 3 C. First-principles calculations show that the FeN x sites in the Stone-Wales configurations induced by the nanowrinkles of the hierarchically porous carbon aerogels show a much lower free energy than the normal counterparts. The resulting iron and nitrogen-codoped carbon aerogels exhibit excellent and reversible oxygen electrocatalytic activity, and can be used as bifunctional cathode catalysts in rechargeable Zn-air batteries, with a performance even better than that based on commercial Pt/C and RuO 2 catalysts. Results from this study highlight the significance of structural distortions of the metal sites in carbon matrices in the design and engineering of highly active single-atom catalysts. 
    more » « less
  3. Abstract

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm−2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates.

     
    more » « less
  4. Abstract

    Carbon dots have been recognized as one of the most promising candidates for the oxygen reduction reaction (ORR) in alkaline media. However, the desired ORR performance in metal–air batteries is often limited by the moderate electrocatalytic activity and the lack of a method to realize good dispersion. To address these issues, herein a biomass‐deriving method is reported to achieve the in situ phosphorus doping (P‐doping) of carbon dots and their simultaneous decoration onto graphene matrix. The resultant product, namely P‐doped carbon dot/graphene (P‐CD/G) nanocomposites, can reach an ultrahigh P‐doping level for carbon nanomaterials. The P‐CD/G nanocomposites are found to exhibit excellent ORR activity, which is highly comparable to the commercial Pt/C catalysts. When used as the cathode materials for a primary liquid Al–air battery, the device shows an impressive power density of 157.3 mW cm−2(comparing to 151.5 mW cm−2of a similar Pt/C battery). Finally, an all‐solid‐state flexible Al–air battery is designed and fabricated based on our new nanocomposites. The device exhibits a stable discharge voltage of ≈1.2 V upon different bending states. This study introduces a unique biomass‐derived material system to replace the noble metal catalysts for future portable and wearable electronic devices.

     
    more » « less
  5. Abstract

    A new isolation protocol was recently reported for highly purified metallic FullertubesD5h‐C90,D3d‐C96, andD5d‐C100,which exhibit unique electronic features. Here, we report the oxygen reduction electrocatalytic behavior of C60, C70(spheroidal fullerenes), and C90, C96, and C100(tubular fullerenes) using a combination of experimental and theoretical approaches. C96(a metal‐free catalyst) displayed remarkable oxygen reduction reaction (ORR) activity, with an onset potential of 0.85 V and a halfway potential of 0.75 V, which are close to the state‐of‐the‐art Pt/C benchmark catalyst values. We achieved an excellent power density of 0.75 W cm−2using C96as a modified cathode in a proton‐exchange membrane fuel cell, comparable to other recently reported efficient metal‐free catalysts. Combined band structure (experimentally calculated) and free‐energy (DFT) investigations show that both favorable energy‐level alignment active catalytic sites on the carbon cage are responsible for the superior activity of C96.

     
    more » « less