skip to main content

Title: Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries
Atomically dispersed metal catalysts have demonstrated superb electrocatalytic activity because of optimal atom efficiency. However, a rational design of low-cost, high-performance single atom catalysts remains a great challenge due to the elusive chemical reactions of the formation of metal active sites. In this work, biomass hydrogel is prepared as a template for mass production of three-dimensional carbon aerogel-supported single metal atom catalysts. By tailoring the structure of the hydrogel templates, the obtained carbon aerogels exhibit an increase of microporous defects which capture and stabilize isolated metal atoms and minimize aggregation during pyrolysis. Extended X-ray absorption fine structure, Mössbauer spectroscopy, and nitrogen adsorption–desorption isotherm measurements indicate that single metal centers of FeN 4 are formed and embedded within the hierarchical porous carbon frameworks. The obtained composites exhibit outstanding catalytic activity towards oxygen reduction in alkaline media, with a high onset potential of +1.05 V and half-wave potential of +0.88 V, as well as excellent durability. Remarkably, when the carbon aerogels are used as the cathode catalyst in an aluminum–air battery, the battery achieves an ultrahigh open-circuit voltage of 1.81 V, large power density of 181.1 mW cm −2 and stable discharge voltage of 1.70 V at 20 mA cm −2 , more » markedly better than those with commercial Pt/C as the cathode catalyst. « less
; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1710408 1900235
Publication Date:
Journal Name:
Journal of Materials Chemistry A
Page Range or eLocation-ID:
20840 to 20846
Sponsoring Org:
National Science Foundation
More Like this
  1. Iron single atom catalysts have emerged as one of the most active electrocatalysts towards the oxygen reduction reaction (ORR), but the unsatisfactory durability and limited activity for the oxygen evolution reaction (OER) has hampered their commercial applications in rechargeable metal–air batteries. By contrast, cobalt-based catalysts are known to afford excellent ORR stability and OER activity, due to the weak Fenton reaction and low OER Gibbs free energy. Herein, a bimetal hydrogel template is used to prepare carbon aerogels containing Fe–Co bimetal sites (NCAG/Fe–Co) as bifunctional electrocatalysts towards both ORR and OER, with enhanced activity and stability, as compared to themore »monometal counterparts. High-resolution transmission electron microscopy, elemental mapping and X-ray photoelectron spectroscopy measurements demonstrate homogeneous distributions of the metal centers within defected carbon lattices by coordination to nitrogen dopants. X-ray absorption spectroscopic measurements, in combination with other results, suggest the formation of FeN 3 and CoN 3 moieties on mutually orthogonal planes with a direct Fe–Co bonding interaction. Electrochemical measurements show that NCAG/Fe–Co delivers a small ORR/OER potential gap of only 0.64 V at the current density of 10 mA cm −2 , 60 mV lower than that (0.70 V) with commercial Pt/C and RuO 2 catalysts. When applied in a flexible Zn–air battery, the dual-metal NCAG/Fe–Co catalyst also shows a remarkable performance, with a high open-circuit voltage of 1.47 V, a maximum power density of 117 mW cm −2 , as well as good rechargeability and flexibility. Results from this study may offer an ingenious protocol in the design and engineering of highly efficient and durable bifunctional electrocatalysts based on dual metal-doped carbons.« less
  2. Rational design of single-metal atom sites in carbon substrates by a flexible strategy is highly desired for the preparation of high-performance catalysts for metal-air batteries. In this study, biomass hydrogel reactors are utilized as structural templates to prepare carbon aerogels embedded with single iron atoms by controlled pyrolysis. The tortuous and interlaced hydrogel chains lead to the formation of abundant nanowrinkles in the porous carbon aerogels, and single iron atoms are dispersed and stabilized within the defective carbon skeletons. X-ray absorption spectroscopy measurements indicate that the iron centers are mostly involved in the coordination structure of FeN 4 , withmore »a minor fraction (ca. 1/5) in the form of FeN 3 C. First-principles calculations show that the FeN x sites in the Stone-Wales configurations induced by the nanowrinkles of the hierarchically porous carbon aerogels show a much lower free energy than the normal counterparts. The resulting iron and nitrogen-codoped carbon aerogels exhibit excellent and reversible oxygen electrocatalytic activity, and can be used as bifunctional cathode catalysts in rechargeable Zn-air batteries, with a performance even better than that based on commercial Pt/C and RuO 2 catalysts. Results from this study highlight the significance of structural distortions of the metal sites in carbon matrices in the design and engineering of highly active single-atom catalysts.« less
  3. Single-atom catalysts based on metal–N4 moieties and anchored on carbon supports (defined as M–N–C) are promising for oxygen reduction reaction (ORR). Among those, M–N–C catalysts with 4d and 5d transition metal (TM4d,5d) centers are much more durable and not susceptible to the undesirable Fenton reaction, especially compared with 3d transition metal based ones. However, the ORR activity of these TM4d,5d–N–C catalysts is still far from satisfactory; thus far, there are few discussions about how to accurately tune the ligand fields of single-atom TM4d,5d sites in order to improve their catalytic properties. Herein, we leverage single-atom Ru–N–C as a model systemmore »and report an S-anion coordination strategy to modulate the catalyst’s structure and ORR performance. The S anions are identified to bond with N atoms in the second coordination shell of Ru centers, which allows us to manipulate the electronic configuration of central Ru sites. The S-anion-coordinated Ru–N–C catalyst delivers not only promising ORR activity but also outstanding long-term durability, superior to those of commercial Pt/C and most of the near-term single-atom catalysts. DFT calculations reveal that the high ORR activity is attributed to the lower adsorption energy of ORR intermediates at Ru sites. Metal–air batteries using this catalyst in the cathode side also exhibit fast kinetics and excellent stability.« less
  4. Electrocatalytic upgrading of biomass-derived feedstocks driven by renewable electricity offers a greener way to reduce the global carbon footprint associated with the production of value-added chemicals. Paired electrolysis is an emerging platform for cogenerating high-valued chemicals from both the cathode and anode, potentially powered by renewable electricity from wind or solar sources. By pairing with an anodic biomass oxidation upgrading reaction, the elimination of the sluggish and less valuable water oxidation increases flow cell productivity and efficiency. In this presentation, we report our research progress on paired electrolsysis of HMF to production of higher valued chemicals in electrochemical flow cells.more »We first prepared an oxide-derived Ag (OD-Ag) electrode with high activity and up to 98.2% selectivity for the ECH of 5-(hydroxymethyl)furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF), and such efficient conversion was achieved in a three-electrode flow cell. The excellent BHMF selectivity was maintained over a broad potential range with long-term operational stability. In HMF-to-BHMF paired with 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated HMF-to-FDCA conversion, a markedly reduced cell voltage from ~7.5 V to ~2.0 V was observed by transferring the electrolysis from the H-type cell to the flow cell, corresponding to more than four-fold increase in energy efficiency in operation at 10 mA. A combined faradaic efficiency of 163% was obtained to BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ~0.85 V at 10 mA. Next, we have demonstrated membrane electrode assembly (MEA)-based flow cells for the paired electrolysis of 5-(hydroxymethyl)furfural (HMF) paired electrolysis to bis(hydroxymethyl)furan (BHMF) and 2,5-furandicarboxylic acid (FDCA). In this work, the oxygen evolution reaction (OER) was substituted by TEMPO-mediated HMF oxidation, dropping the cell voltage was from 1.4 V to 0.7 V at a current density of 1.0 mA cm−2. A minimized cell voltage of ~1.5 V for a continuous 24 h co-electrolysis of HMF was then achieved at the current density of 2 mA cm−2(constant current of 10 mA), leading to the highest combined faradaic efficiency (FE) of 139% for HMF-to-BHMF and HMF-to-FDCA. A NiFe oxide catalyst on carbon cloth further replaced the anodic TEMPO mediator for HMF paired electrolysis in a pH-asymmetric flow cell. We envision renewable electrical energy can potentially drive the whole process, thus providing a sustainable avenue towards distributed, scalable, and energy-efficient electrosynthesis.« less
  5. Employing the strong metal-support interaction (SMSI) effect for promoting the catalyst's activity toward the oxygen reduction reaction (ORR) is promising due to the electronic structure optimization and high utilization efficiency of platinum group metal (PGM) catalysts. Metal oxides as alternative supports for PGMs facilitate intrinsic activity and improve durability as compared to conventional carbon supports. However, the restricted mass and electron transfer at the metal/support interface need to be addressed. Herein, to strengthen the interaction at the metal/support interfaces and improve the utilization efficiency of PGM, an ultralow loading of Pd was embedded in a surface-oxygenated PdNiMnO porous film. Themore »Mn-doping was designed to promote surface oxygenation using a facile anodization process that created sufficiently exposed interfaces between Pd and the support, strengthening the SMSI effects at the Pd/oxygenated support interface for enhancing ORR performance. Furthermore, the Ni-containing oxygenated catalyst served as both the active component for the oxygen evolution reaction (OER) and the functional support for stabilizing Pd, making PdNiMnO a bifunctional catalyst for zinc–air flow batteries (ZAFB). As a proof-of-concept, the ZAFB (PdNiMnO) shows a maximal power density of 211.6 mW cm −2 and outstanding cycling stability for over 2000 h with a minimal voltage gap of 0.69 V at a current density of 10 mA cm −2 , superior to the state-of-the-art catalysts.« less