skip to main content


Title: Generating Levels That Teach Mechanics
The automatic generation of game tutorials is a challenging AI problem. While it is possible to generate annotations and instructions that explain to the player how the game is played, this paper focuses on generating a gameplay experience that introduces the player to a game mechanic. It evolves small levels for the Mario AI Framework that can only be beaten by an agent that knows how to perform specific actions in the game. It uses variations of a perfect A* agent that are limited in various ways, such as not being able to jump high or see enemies, to test how failing to do certain actions can stop the player from beating the level.  more » « less
Award ID(s):
1717324
NSF-PAR ID:
10132610
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
FDG Workshop on Procedural Content Generation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a networked anagram game, each team member is given a set of letters and members collectively form as many words as possible. They can share letters through a communication network in assisting their neighbors in forming words. There is variability in behaviors of players, e.g., there can be large differences in numbers of letter requests, of replies to letter requests, and of words formed among players. Therefore, it is of great importance to understand uncertainty and variability in player behaviors. In this work, we propose versatile uncertainty quantification (VUQ) of behaviors for modeling the networked anagram game. Specifically, the proposed methods focus on building contrastive models of game player behaviors that quantify player actions in terms of worst, average, and best performance. Moreover, we construct agent-based models and perform agent-based simulations using these VUQ methods to evaluate the model building methodology and understand the impact of uncertainty. We believe that this approach is applicable to other networked games. 
    more » « less
  2. null (Ed.)
    We study the following problem, which to our knowledge has been addressed only partially in the literature and not in full generality. An agent observes two players play a zero-sum game that is known to the players but not the agent. The agent observes the actions and state transitions of their game play, but not rewards. The players may play either op-timally (according to some Nash equilibrium) or according to any other solution concept, such as a quantal response equilibrium. Following these observations, the agent must recommend a policy for one player, say Player 1. The goal is to recommend a policy that is minimally exploitable un-der the true, but unknown, game. We take a Bayesian ap-proach. We establish a likelihood function based on obser-vations and the specified solution concept. We then propose an approach based on Markov chain Monte Carlo (MCMC), which allows us to approximately sample games from the agent’s posterior belief distribution. Once we have a batch of independent samples from the posterior, we use linear pro-gramming and backward induction to compute a policy for Player 1 that minimizes the sum of exploitabilities over these games. This approximates the policy that minimizes the ex-pected exploitability under the full distribution. Our approach is also capable of handling counterfactuals, where known modifications are applied to the unknown game. We show that our Bayesian MCMC-based technique outperforms two other techniques—one based on the equilibrium policy of the maximum-probability game and the other based on imitation of observed behavior—on all the tested stochastic game envi-ronments. 
    more » « less
  3. We present a game benchmark for testing human- swarm control algorithms and interfaces in a real-time, high- cadence scenario. Our benchmark consists of a swarm vs. swarm game in a virtual ROS environment in which the goal of the game is to “capture” all agents from the opposing swarm; the game’s high-cadence is a result of the capture rules, which cause agent team sizes to fluctuate rapidly. These rules require players to consider both the number of agents currently at their disposal and the behavior of their opponent’s swarm when they plan actions. We demonstrate our game benchmark with a default human-swarm control system that enables a player to interact with their swarm through a high-level touchscreen interface. The touchscreen interface transforms player gestures into swarm control commands via a low-level decentralized ergodic control framework. We compare our default human- swarm control system to a flocking-based control system, and discuss traits that are crucial for swarm control algorithms and interfaces operating in real-time, high-cadence scenarios like our game benchmark. Our game benchmark code is available on Github; more information can be found at https: //sites.google.com/view/swarm- game- benchmark. 
    more » « less
  4. Teamwork is a set of interrelated reasoning, actions and behaviors of team members that facilitate common objectives. Teamwork theory and experiments have resulted in a set of states and processes for team effectiveness in both human-human and agent-agent teams. However, human-agent teaming is less well studied because it is so new and involves asymmetry in policy and intent not present in human teams. To optimize team performance in human-agent teaming, it is critical that agents infer human intent and adapt their polices for smooth coordination. Most literature in human-agent teaming builds agents referencing a learned human model. Though these agents are guaranteed to perform well with the learned model, they lay heavy assumptions on human policy such as optimality and consistency, which is unlikely in many real-world scenarios. In this paper, we propose a novel adaptive agent architecture in human-model-free setting on a two-player cooperative game, namely Team Space Fortress (TSF). Previous human-human team research have shown complementary policies in TSF game and diversity in human players’ skill, which encourages us to relax the assumptions on human policy. Therefore, we discard learning human models from human data, and instead use an adaptation strategy on a pre-trained library of exemplar policies composed of RL algorithms or rule-based methods with minimal assumptions of human behavior. The adaptation strategy relies on a novel similarity metric to infer human policy and then selects the most complementary policy in our library to maximize the team performance. The adaptive agent architecture can be deployed in real-time and generalize to any off-the-shelf static agents. We conducted human-agent experiments to evaluate the proposed adaptive agent framework, and demonstrated the suboptimality, diversity, and adaptability of human policies in human-agent teams. 
    more » « less
  5. Recent years have seen the rapid adoption of artificial intelligence (AI) in every facet of society. The ubiquity of AI has led to an increasing demand to integrate AI learning experiences into K-12 education. Early learning experiences incorporating AI concepts and practices are critical for students to better understand, evaluate, and utilize AI technologies. AI planning is an important class of AI technologies in which an AI-driven agent utilizes the structure of a problem to construct plans of actions to perform a task. Although a growing number of efforts have explored promoting AI education for K-12 learners, limited work has investigated effective and engaging approaches for delivering AI learning experiences to elementary students. In this paper, we propose a visual interface to enable upper elementary students (grades 3-5, ages 8-11) to formulate AI planning tasks within a game-based learning environment. We present our approach to designing the visual interface as well as how the AI planning tasks are embedded within narrative-centered gameplay structured around a Use-Modify-Create scaffolding progression. Further, we present results from a qualitative study of upper elementary students using the visual interface. We discuss how the Use-Modify-Create approach supported student learning as well as discuss the misconceptions and usability issues students encountered while using the visual interface to formulate AI planning tasks. 
    more » « less