skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Agent-Based Modeling Framework for Simulation of Societal Impacts of Infrastructure Service Disruptions during Disasters
The objective of this paper is to model and examine the impacts of different levels of infrastructure service losses caused by disasters on the households’ well-being residing in a community. An agent-based simulation model was developed to capture complex mechanisms underlying households’ tolerance for the service outages, including household characteristics (e.g., sociodemographic, social capital, resources, and previous disaster experience), physical infrastructure attributes, and extreme disruptive events. The rules governing these mechanisms were determined using empirical survey data collected from the residents of Harris County affected by Hurricane Harvey as well as the existing models for power outages and service restoration times. The analysis results highlighted the spatial diffusion of service risks among households living in affected areas in disasters. The proposed simulation model will provide utility agencies with an analytical tool for prioritization of infrastructure service restoration actions to effectively mitigate the societal impacts of service losses.  more » « less
Award ID(s):
1846069
PAR ID:
10132866
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASCE Computing in Civil Engineering Workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Major disasters such as wildfire, tornado, hurricane, tropical storm, and flooding cause disruptions in infrastructure systems such as power and water supply, wastewater management, telecommunication, and transportation facilities. Disruptions in electricity infrastructure have negative impacts on sectors throughout a region, including education, medical services, financial services, and recreation. In this study, we introduced a novel approach to investigate the factors that can be associated with longer restoration time of power service after a hurricane. Considering restoration time as the dependent variable and using a comprehensive set of county-level data, we estimated a generalized accelerated failure time (GAFT) model that accounts for spatial dependence among observations for time to event data. The model fit improved by 12% after considering the effects of spatial correlation in time to event data. Using the GAFT model and Hurricane Irma’s impact on Florida as a case study, we examined: (1) differences in electric power outages and restoration rates among different types of power companies—investor-owned power companies, rural and municipal cooperatives; (2) the relationship between the duration of power outage and power system variables; and (3) the relationship between the duration of power outage and socioeconomic attributes. The findings of this study indicate that counties with a higher percentage of customers served by investor-owned electric companies and lower median household income faced power outage for a longer time. This study identified the key factors to predict restoration time of hurricane-induced power outages, allowing disaster management agencies to adopt strategies required for restoration process. 
    more » « less
  2. null (Ed.)
    The objective of this study is to empirically assess household susceptibility to the power disruptions during disasters. In this study, a service gap model is utilized to characterize household susceptibility to infrastructure service disruptions. The empirical household survey data collected from Harris County, Texas, in the aftermath of Hurricane Harvey was employed in developing an appropriate empirical model to specify the significance of various factors influencing household susceptibility. Various factors influencing households’ susceptibility were implemented in developing the models. The step-wise algorithm was used to choose the best subset of variables, and availability of substitutes, previous hazards experience, level of need, access to reliable information, race, service expectations, social capital, and residence duration were selected to be included in the models. Among three classes of models, accelerated failure time (AFT)-loglogistic model yielded the best model fitness for estimating households’ susceptibility to disaster-induced power disruption. The model showed that having a substitute, households’ need for the service, race, and access to reliable information are the most significant factors influencing household susceptibility to the power disruptions. Understanding households’ susceptibility to infrastructure service disruptions provides useful insights for prioritizing infrastructure resilience improvements in order to reduce societal impacts. 
    more » « less
  3. Natural disasters have devastating effects on the infrastructure and disrupt every aspect of daily life in the regions they hit. To alleviate problems caused by these disasters, first an impact assessment is needed. As such, this paper focuses on a two-step methodology to identify the impact of Hurricane Hermine on the City of Tallahassee, the capital of Florida. The regional and socioeconomic variations in the Hermine’s impact were studied via spatially and statistically analyzing power outages. First step includes a spatial analysis to illustrate the magnitude of customers affected by power outages together with a clustering analysis. This step aims to determine whether the customers affected from outages are clustered or not. Second step involves a Bayesian spatial autoregressive model in order to identify the effects of several demographic-, socioeconomic-, and transportation-related variables on the magnitude of customers affected by power outages. Results showed that customers affected by outages are spatially clustered at particular regions rather than being dispersed. This indicates the need to pinpoint such vulnerable locations and develop strategies to reduce hurricane-induced disruptions. Furthermore, the increase in the magnitude of affected customers was found to be associated with several variables such as the power network and total generated trips as well as the demographic factors. The information gained from the findings of this study can assist emergency officials in identifying critical and/or less resilient regions, and determining those demographic and socioeconomic groups which were relatively more affected by the consequences of hurricanes than others. 
    more » « less
  4. Household power outage experiences vary based on outage characteristics and the household's ability to cope with a disruption. While disaster management scholarship has produced methods to predict where the most significant impacts of a hazard may occur, these methods do not anticipate secondary effects, such as those from power outages. This research is necessary as the expected risks associated with power outages will increase in the United States due to climate change, increasing electricity demand, and aging infrastructure. To understand households' power outage experiences, we collected 896 surveys from three cities in the United States: Detroit, MI; Miami, FL; and Phoenix, AZ. Participants were recruited through Amazon's Mechanical Turk (MTurk) service to complete a survey. We hypothesized that racial/ethnic minority groups, specifically non-white households and lower-income households experienced more frequent and prolonged power outages. We also hypothesized that the same groups were more likely to have experienced more significant adverse effects, such as throwing away perishable food and not receiving assistance. We found that non-white households in Phoenix and Detroit were more likely to experience longer outages than white households; however, this association was not present in Miami and was not statistically significant in any city. Income was not a major factor in predicting food waste or assistance received during the longest self-reported outage. Further assessments in varying geographical contexts and more generalizable samples are necessary to increase understanding of how households experience power outages. 
    more » « less
  5. Natural disasters has been causing an increasing amount of economic losses in the past two decades. Natural disasters, such as hurricanes, winter storms, and wildfires, can cause severe damages to power systems, significantly impacting industrial, commercial, and residential activities, leading to not only economic losses but also inconveniences to people’s day-today life. Improving the resilience of power systems can lead to a reduced number of power outages during extreme events and is a critical goal in today’s power system operations. This paper presents a model for decentralized decision-making in power systems based on distributed optimization and implemented it on a modified RTS-96 test system, discusses the convergence of the problem, and compares the impact of decision-making mechanisms on power system resilience. Results show that a decentralized decision-making algorithm can significantly reduce power outages when part of the system is islanded during severe transmission contingencies. 
    more » « less