Transition path theory (TPT) offers a powerful formalism for extracting the rate and mechanism of rare dynamical transitions between metastable states. Most applications of TPT either focus on systems with modestly sized state spaces or use collective variables to try to tame the curse of dimensionality. Increasingly, expressive function approximators such as neural networks and tensor networks have shown promise in computing the central object of TPT, the committor function, even in very high-dimensional systems. That progress prompts our consideration of how one could use such a high-dimensional function to extract mechanistic insights. Here, we present and illustrate a straightforward but powerful way to track how individual dynamical coordinates evolve during a reactive event. The strategy, which involves marginalizing the reactive ensemble, naturally captures the evolution of the dynamical coordinate’s distribution, not just its mean reactive behavior.
more »
« less
Characterizing Distances of Networks on the Tensor Manifold
At the core of understanding dynamical systems is the ability to maintain and control the systems behavior that includes notions of robustness, heterogeneity, and/or regime-shift detection. Recently, to explore such functional properties, a convenient representation has been to model such dynamical systems as a weighted graph consisting of a finite, but very large number of interacting agents. This said, there exists very limited relevant statistical theory that is able cope with real-life data, i.e., how does perform analysis and/or statistics over a “family” of networks as opposed to a specific network or network-to-network variation. Here, we are interested in the analysis of network families whereby each network represents a “point” on an underlying statistical manifold. To do so, we explore the Riemannian structure of the tensor manifold developed by Pennec previously applied to Diffusion Tensor Imaging (DTI) towards the problem of network analysis. In particular, while this note focuses on Pennec definition of “geodesics” amongst a family of networks, we show how it lays the foundation for future work for developing measures of network robustness for regime-shift detection. We conclude with experiments highlighting the proposed distance on synthetic networks and an application towards biological (stem-cell) systems.
more »
« less
- Award ID(s):
- 1749937
- PAR ID:
- 10132941
- Date Published:
- Journal Name:
- International Conference on Complex Networks and Their Applications
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
How can prior knowledge on the transformation invariances of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable image-to-image mappings that improve the robustness of models towards predefined continuous transformation groups. Through the use of specially-derived canonical coordinate systems, ETs incorporate functions that are equivariant by construction with respect to these transformations. We show empirically that ETs can be flexibly composed to improve model robustness towards more complicated transformation groups in several parameters. On a real-world image classification task, ETs improve the sample efficiency of ResNet classifiers, achieving relative improvements in error rate of up to 15% in the limited data regime while increasing model parameter count by less than 1%more » « less
-
The widespread of geotagged data combined with modern map services allows for the accurate attachment of data to spatial networks. Applying statistical analysis, such as hotspot detection, over spatial networks is very important for precise quantification and patterns analysis, which empowers effective decision-making in various important applications. Existing hotspot detection algorithms on spatial networks either lack statistical evidence on detected hotspots, such as clustering, or they provide statistical evidence at a prohibitive computational overhead. In this paper, we propose efficient algorithms for detecting hotspots based on the network local K-function for predefined and unknown hotspot radii. The network local K-function is a widely adopted statistical approach for network pattern analysis that enables the understanding of the density and distribution of activities and events in the spatial network. However, its practical application has been limited due to the inefficiency of existing algorithms, particularly for large-sized networks. Extensive experimental evaluation using real and synthetic datasets shows that our algorithms are up to 28 times faster than the state-of-the-art algorithms in computing hotspots with a predefined radius and up to more than four orders of magnitude faster in identifying hotspots without a predefined radius.more » « less
-
Incorporating symmetry as an inductive bias into neural network architecture has led to improvements in generalization, data efficiency, and physical consistency in dynamics modeling. Methods such as CNNs or equivariant neural networks use weight tying to enforce symmetries such as shift invariance or rotational equivariance. However, despite the fact that physical laws obey many symmetries, real-world dynamical data rarely conforms to strict mathematical symmetry either due to noisy or incomplete data or to symmetry breaking features in the underlying dynamical system. We explore approximately equivariant networks which are biased towards preserving symmetry but are not strictly constrained to do so. By relaxing equivariance constraints, we find that our models can outperform both baselines with no symmetry bias and baselines with overly strict symmetry in both simulated turbulence domains and real-world multi-stream jet flow.more » « less
-
The widespread availability of geotagged data combined with modern map services allows for the accurate attachment of data to spatial networks. Applying statistical analysis, such as hotspot detection, over spatial networks is very important for precise quantification and patterns analysis, which empowers effective decision-making in various important applications. Existing hotspot detection algorithms on spatial networks either lack sufficient statistical evidence on detected hotspots, such as clustering, or they provide statistical evidence at a prohibitive computational overhead. In this paper, we propose efficient algorithms for detecting hotspots based on the network local K-function for predefined and unknown hotspot radii. The K-function is a widely adopted statistical approach for network pattern analysis that enables the understanding of the density and distribution of activities and events happening within the spatial network. However, its practical application has been limited due to the inefficiency of state-of-the-art algorithms, particularly for large-sized networks. Extensive experimental evaluation using real and synthetic datasets shows that our algorithms are up to 28 times faster than the state-of-the-art algorithms in computing hotspots with a predefined radius and up to more than four orders of magnitude faster in identifying hotspots without a predefined radius. Additionally, to address dynamic changes in the spatial network, we propose an incremental hotspot detection approach that efficiently updates hotspot computations by leveraging prior results as new events are added.more » « less
An official website of the United States government

