skip to main content


Title: An explanatory model of temperature influence on flowering through whole-plant accumulation of FLOWERING LOCUS T in Arabidopsis thaliana
We assessed mechanistic temperature influence on flowering by incorporating temperature-responsive flowering mechanisms across developmental age into an existing model. Temperature influences the leaf production rate as well as expression of FLOWERING LOCUS T (FT), a photoperiodic flowering regulator that is expressed in leaves. The Arabidopsis Framework Model incorporated temperature influence on leaf growth but ignored the consequences of leaf growth on and direct temperature influence of FT expression. We measured FT production in differently aged leaves and modified the model, adding mechanistic temperature influence on FT transcription, and causing whole-plant FT to accumulate with leaf growth. Our simulations suggest that in long days, the developmental stage (leaf number) at which the reproductive transition occurs is influenced by day length and temperature through FT, while temperature influences the rate of leaf production and the time (in days) the transition occurs. Further, we demonstrate that FT is mainly produced in the first 10 leaves in the Columbia (Col-0) accession, and that FT accumulation alone cannot explain flowering in conditions in which flowering is delayed. Our simulations supported our hypotheses that: (i) temperature regulation of FT, accumulated with leaf growth, is a component of thermal time, and (ii) incorporating mechanistic temperature regulation of FT can improve model predictions when temperatures change over time.  more » « less
Award ID(s):
1656076
NSF-PAR ID:
10132952
Author(s) / Creator(s):
Date Published:
Journal Name:
in silico plants
Volume:
1
Issue:
1
ISSN:
2517-5025
Page Range / eLocation ID:
diz006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background The 29-member Arabidopsis AHL gene family is classified into three main classes based on nucleotide and protein sequence evolutionary differences. These differences include the presence or absence of introns, type and/or number of conserved AT-hook and PPC domains. AHL gene family members are divided into two phylogenetic clades, Clade-A and Clade-B. A majority of the 29 members remain functionally uncharacterized. Furthermore, the biological significance of the DNA and peptide sequence diversity, observed in the conserved motifs and domains found in the different AHL types, is a subject area that remains largely unexplored. Results Transgenic plants overexpressing AtAHL20 flowered later than the wild type under both short and long days. Transcript accumulation analyses showed that 35S:AtAHL20 plants contained reduced FT, TSF, AGL8 and SPL3 mRNA levels. Similarly, overexpression of AtAHL20’s orthologue in Camelina sativa, Arabidopsis’ closely related Brassicaceae family member species, conferred a late-flowering phenotype via suppression of CsFT expression. However, overexpression of an aberrant AtAHL20 gene harboring a missense mutation in the AT-hook domain’s highly conserved R-G-R core motif abolished the late-flowering phenotype. Data from targeted yeast-two-hybrid assays showed that AtAHL20 interacted with itself and several other Clade-A Type-I AHLs which have been previously implicated in flowering-time regulation: AtAHL19, AtAHL22 and AtAHL29. Conclusion We showed via gain-of-function analysis that AtAHL20 is a negative regulator of FT expression, as well as other downstream flowering time regulating genes. A similar outcome in Camelina sativa transgenic plants overexpressing CsAHL20 suggest that this is a conserved function. Our results demonstrate that AtAHL20 acts as a photoperiod-independent negative regulator of transition to flowering. 
    more » « less
  2. SUMMARY

    Flowering of the reference legumeMedicago truncatulais promoted by winter cold (vernalization) followed by long‐day photoperiods (VLD) similar to winter annual Arabidopsis. However, Medicago lacksFLCandCO, key regulators of Arabidopsis VLD flowering.Most plants have twoINHIBITOR OF GROWTH(ING) genes (ING1andING2), encoding proteins with an ING domain with two anti‐parallel alpha‐helices and a plant homeodomain (PHD) finger, but their genetic role has not been previously described.In Medicago,Mting1gene‐edited mutants developed and flowered normally, but anMting2‐1 Tnt1insertion mutant and gene‐editedMting2mutants had developmental abnormalities including delayed flowering particularly in VLD, compact architecture, abnormal leaves with extra leaflets but no trichomes, and smaller seeds and barrels.Mting2mutants had reduced expression of activators of flowering, including theFT‐like geneMtFTa1, and increased expression of the candidate repressorMtTFL1c, consistent with the delayed flowering of the mutant.MtING2overexpression complementedMting2‐1, but did not accelerate flowering in wild type. The MtING2 PHD finger bound H3K4me2/3 peptides weaklyin vitro, but analysis of gene‐edited mutants indicated that it was dispensable to MtING2 function in wild‐type plants. RNA sequencing experiments indicated that >7000 genes are mis‐expressed in theMting2‐1mutant, consistent with its strong mutant phenotypes. Interestingly, ChIP‐seq analysis identified >5000 novel H3K4me3 locations in the genome ofMting2‐1mutants compared to wild type R108. Overall, our mutant study has uncovered an important physiological role of a plantING2gene in development, flowering, and gene expression, which likely involves an epigenetic mechanism.

     
    more » « less
  3. Abstract

    Leaf‐derived signals drive the development of the shoot, eventually leading to flowering. In maize, transcripts of genes that facilitate jasmonic acid (JA) signaling are more abundant in juvenile compared to adult leaf primordia; exogenous application of JA both extends the juvenile phase and delays the decline in miR156 levels. To test the hypothesis that JA promotes juvenility, we measured JA and meJA levels using LC‐MS in successive stages of leaf one development and in later leaves at stages leading up to phase change in both normal maize and phase change mutants. We concurrently measured gibberellic acid (GA), required for the timely transition to the adult phase. Jasmonic acid levels increased from germination through leaf one differentiation, declining in later formed leaves as the shoot approached phase change. In contrast, levels of GA were low in leaf one after germination and increased as the shoot matured to the adult phase. Multiple doses of exogenous JA resulted in the production of as many as three additional juvenile leaves. We analyzed two transcript expression datasets to investigate when gene regulation by miR156 begins in the context of spatiotemporal patterns of JA and GA signaling. Quantifying these hormones in phase change mutants provided insight into how these two hormones control phase‐specific patterns of differentiation. We conclude that the hormone JA is a leaf‐provisioned signal that influences the duration, and possibly the initiation, of the juvenile phase of maize by controlling patterns of differentiation in successive leaf primordia.

     
    more » « less
  4. Abstract

    Conservative flowering behaviours, such as flowering during long days in summer or late flowering at a high leaf number, are often proposed to protect against variable winter and spring temperatures which lead to frost damage if premature flowering occurs. Yet, due the many factors in natural environments relative to the number of individuals compared, assessing which climate characteristics drive these flowering traits has been difficult. We applied a multidisciplinary approach to 10 winter‐annualArabidopsis thalianapopulations from a wide climactic gradient in Norway. We used a variable reduction strategy to assess which of 100 climate descriptors from their home sites correlated most to their flowering behaviours when tested for responsiveness to photoperiod after saturation of vernalization; then, assessed sequence variation of 19 known environmental‐response flowering genes. Photoperiod responsiveness inversely correlated with interannual variation in timing of growing season onset. Time to flowering appeared driven by growing season length, curtailed by cold fall temperatures. The distribution ofFLM, TFL2 andHOS1haplotypes, genes involved in ambient temperature response, correlated with growing‐season climate. We show that long‐day responsiveness and late flowering may be driven not by risk of spring frosts, but by growing season temperature and length, perhaps to opportunistically maximize growth.

     
    more » « less
  5. Summary

    Many plants require prolonged exposure to cold to acquire the competence to flower. The process by which cold exposure results in competence is known as vernalization. InArabidopsis thaliana, vernalization leads to the stable repression of the floral repressorFLOWERING LOCUS Cvia chromatin modification, including an increase of trimethylation on lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2). Vernalization in pooids is associated with the stable induction of a floral promoter,VERNALIZATION1(VRN1). From a screen for mutants with a reduced vernalization requirement in the model grassBrachypodium distachyon, we identified two recessive alleles ofENHANCER OF ZESTELIKE 1(EZL1).EZL1is orthologous toA. thalianaCURLY LEAF 1, a gene that encodes the catalytic subunit ofPRC2.B. distachyon ezl1mutants flower rapidly without vernalization in long‐day (LD) photoperiods; thus,EZL1is required for the proper maintenance of the vegetative state prior to vernalization. Transcriptomic studies inezl1revealed mis‐regulation of thousands of genes, including ectopic expression of several floral homeotic genes in leaves. Loss ofEZL1results in the global reduction of H3K27me3 and H3K27me2, consistent with this gene making a major contribution toPRC2 activity inB. distachyon. Furthermore, inezl1mutants, the flowering genesVRN1andAGAMOUS(AG) are ectopically expressed and have reduced H3K27me3. Artificial microRNAknock‐down of eitherVRN1orAGinezl1‐1mutants partially restores wild‐type flowering behavior in non‐vernalized plants, suggesting that ectopic expression inezl1mutants may contribute to the rapid‐flowering phenotype.

     
    more » « less