We have carried out a paleomagnetic study of three piston cores collected from Lake Turkana. The goal is to recover a Holocene paleomagnetic secular variation (PSV) record for this lake and to correlate it with other Holocene PSV records from the East Africa Rift Valley (EARV). All three cores were sampled with u-channels and magnetic measurements of magnetic susceptibility, the natural remanence (NRM), and two artificial remanences, anhysteretic remanence (ARM) and saturation isothermal remanence (SIRM), were made on them. The remanences were routinely step-wise demagnetized and measured at 10 mT steps up to 60 mT. The NRMS had a simple pattern of demagnetization with a characteristic direction (ChRM) removed between 10 and 60 mT. ARM and SIRM demagnetization indicated that the magnetic grains were relatively soft with median destructive fields (MDF) less than 30 mT. We interpret the magnetic grains to be multi-domain (silt-sized) magnetite/titanomagnetite. The resulting magnetic records of all three cores could be correlated. A chronology for these cores was determined from four radiocarbon dates on core 4P. We also estimated the sediment ages by correlating the PSV to two other well-dated PSV records from the same region, Lakes Malawi and Victoria. PSV age estimation indicates that the radiocarbon dates are about 500 year too old; a correction for that offset causes three of the four radiocarbon ages to become consistent with the PSV age estimates. The final composite Lake Turkana PSV record for the last ~4000 years is the highest resolution directional record of PSV (~200 cm/ky) ever to be recovered from Africa.
We have conducted a paleomagnetic study of Holocene sediments from Lake Victoria in order to develop a high-resolution record of paleomagnetic secular variation (PSV). This study has recovered PSV records from two cores (V95-1P and V95-7P) in northern Lake Victoria (0.5°S). The PSV is recorded in fine-grained detrital magnetite/titanomagnetite grains, but the rock magnetic data suggest that significant magnetic mineral dissolution has occurred, which limits our paleomagnetic studies to the uppermost ~5 m of both cores. Detailed alternating field (af) demagnetization of the natural remanence (NRM) shows that a distinctive characteristic remanence (ChRM) is demagnetized from ~10 to 40 mT, which decreases simply toward the origin. The resulting directional PSV records for 1P and 7P are correlatable with 22 distinct inclination features and 19 declination features. Radiocarbon dating of the cores is based on eight radiocarbon dates from core 1P, which can be correlated into core 7P using both the PSV and rock magnetic/environmental measurements. The final PSV time series cover the last 11,000 years with an average sediment accumulation rate of ~40 cm/kyr. The Lake Victoria PSV records can be correlated with new PSV records from Lake Malawi. Comparison of the correlatable PSV feature ages between the two lakes indicates that the PSV records are not significantly different in age, although Lake Victoria PSV ages might average ~100 years younger. We think that the Lake Victoria and Lake Malawi PSV records, together, provide the most accurate, well-dated, and consistent record of Holocene PSV for Africa yet developed.
more » « less- PAR ID:
- 10132968
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- The Holocene
- ISSN:
- 0959-6836
- Page Range / eLocation ID:
- Article No. 095968361990121
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We investigate the amplitude and frequency of directional geomagnetic change since 15 ka in the Northern North Atlantic (∼67°N) using five “ultra‐high” resolution continental shelf sediment cores deposited at rates greater than 1 m/kyr. The ages of these cores are constrained by 103 radiocarbon dates with reservoir ages assessed through tephra correlation to terrestrial archives. Our study aims to address many of the uncertainties that are common in sedimentary paleomagnetic studies, including signal attenuation in low to moderate resolution archives and difficulty to demonstrate reproducibility in higher resolution archives. The “ultra‐high” accumulation rates of our cores reduce “lock‐in” and smoothing uncertainties associated with magnetic acquisition processes. Abundant radiocarbon dates along with an objective alignment algorithm provide a test of signal reproducibility at sub‐millennial timescales. The paleomagnetic secular variation (PSV) signal, evaluated as individual records and as a new stack (GREENICE15k), validates prior results, but provides stronger geochronological constraints, demonstrates a reproducible PSV signal and amplitude, and extends through the abrupt Bølling–Allerød and Younger Dryas climate transitions of the latest Pleistocene. While broadly consistent with time‐varying spherical harmonic models and varve dated records from Northern Europe, we demonstrate greater variance and higher amplitudes—particularly at sub‐millennial timescales. This robust variability on centennial timescales is rarely observed or discussed, but is likely important to our understanding of some of the most intriguing aspects of the geodynamo.
-
Palmer Deep sediment cores are used to produce the first high-resolution, continuous late Pleistocene to Holocene time-series from the Antarctic marine system. The sedimentary record is dated using accelerator mass spectrometer radiocarbon methods on acid insoluble organic matter and foraminiferal calcite. Fifty-four radiocarbon analyses are utilized in the dating which provides a calibrated timescale back to 13 ka BP. Reliability of resultant ages on organic matter is assured because duplicates produce a standard deviation from the surface age of less than laboratory error (i.e., ±50 years). In addition, surface organic matter ages at the site are in excellent agreement with living calcite ages at the accepted reservoir age of 1260 years for the Antarctic Peninsula. Spectral analyses of the magnetic susceptibility record against the age model reveal unusually strong periodicity in the 400,–200 and 50-70 year frequency bands, similar to other high-resolution records from the Holocene but, so far, unique for the circum-Antarctic. Here we show that comparison to icecore records of specific climatic events (e.g., the ’Little Ice Age‘, Neoglacial, Hypsithermal, and the Bølling/Allerød to Younger Dryas transition) provides improved focus upon the relative timing of atmosphere/ocean changes between the northern anid southern high latitudes.
-
Relative changes in geomagnetic field intensity over the last 280 kyears have been recovered from the study of three marine cores from the Açores area. One core was precisely dated by oxygen isotope study and the other two records were linked to it using light reflectance analysis which allowed precise correlation. Rock magnetic analysis shows that the main magnetic mineral is magnetite with a very homogeneous grain-size distribution in the pseudo-single domain range for the three cores. Changes in the amount of magnetite do not exceed a factor of 10. Therefore, these cores appear to be suitable for relative palaeointensity determinations. Two mineral magnetic components with periodicities of 23 and 18 kyears are present in the records of bulk magnetic parameters and natural remanent magnetisation (NRM), but the power at these frequencies is not significant at the 95% level for the normalised remanence records. For each core, normalisation of the NRM using different normalising parameters yields virtually identical results. Using saturation isothermal remanent magnetisation (SIRM) as the normalising parameter, the results of the three cores were then combined into a stacked curve. Squared coherence analysis between this stacked curve and bulk mineral-magnetic parameters reveals that the 18 kyear component is still present in the record, but that the power spectrum is barely above noise level at this frequency. Some of the features of this North Atlantic record are consistent with the main characteristics already documented in other sedimentary or volcanic records. For instance, distinct periods of low intensity are observed around 40, 120, and 190 kyears, and periods of high intensity at 50 and 80 kyears. Because of the uniformity of the mineral-magnetic characteristics of the three cores, we suggest that this record may be a suitable palaeointensity reference curve for the Central North Atlantic Ocean region.more » « less
-
Abstract Sedimentary relative paleointensity (RPI) records are often carried by complex magnetic mineral mixtures, including detrital and biogenic magnetic minerals. Recent studies have demonstrated that magnetic inclusions within larger detrital silicate particles can make significant contributions to sedimentary paleomagnetic records. However, little is known about the role such inclusions play in sedimentary paleomagnetic signal recording. We analyzed paleomagnetic and mineral magnetic data for marine sediment core MD01‐2421 from the North Pacific Ocean, offshore of central Japan, to assess how magnetic inclusions and other detrital magnetic minerals record sedimentary paleomagnetic signals. Stratigraphic intervals in which abundant magnetic inclusions dominate the magnetic signal are compared with other intervals to assess quantitatively their contribution to sedimentary RPI signals. The normalized remanence record from core MD01‐2421 does not correlate clearly with global RPI stacks, which we attribute to a demonstrated lower paleomagnetic recording efficiency of magnetic inclusions compared to other detrital magnetic minerals. We also carried out the first laboratory redeposition experiments under controlled Earth‐like magnetic fields for particles with magnetic inclusions using material from core MD01‐2421. Our results confirm that such particles can be aligned by ambient magnetic fields but with a lower magnetic recording efficiency compared to other detrital magnetic minerals, which is consistent with normalized remanence data from core MD01‐2421. Our demonstration of the role of sedimentary magnetic inclusions should have wide applicability for understanding sedimentary paleomagnetic recording.