Control of surface functionalization of MXenes holds great potential, and in particular, may lead to tuning of magnetic and electronic order in the recently reported magnetic Cr2TiC2T
Scaling the production of synthetic 2D materials to industrial quantities has faced significant challenges due to synthesis bottlenecks whereby few have been produced in large volumes. These challenges typically stem from bottom‐up approaches limiting the production to the substrate size or precursor availability for chemical synthesis and/or exfoliation. In contrast, MXenes, a large class of 2D transition metal carbides and/or nitrides, are produced via a top‐down synthesis approach. The selective wet etching process does not have similar synthesis constraints as some other 2D materials. The reaction occurs in the whole volume; therefore, the process can be readily scaled with reactor volume. Herein, the synthesis of 2D titanium carbide MXene (Ti3C2T
- NSF-PAR ID:
- 10132998
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 22
- Issue:
- 3
- ISSN:
- 1438-1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract x . Here, vacuum annealing experiments of Cr2TiC2Tx are reported with in situ electron energy loss spectroscopy and novel in situ Cr K‐edge extended energy loss fine structure analysis, which directly tracks the evolution of the MXene surface coordination environment. These in situ probes are accompanied by benchmarking synchrotron X‐ray absorption fine structure measurements and density functional theory calculations. With the etching method used here, the MXene has an initial termination chemistry of Cr2TiC2O1.3F0.8. Annealing to 600 °C results in the complete loss of F, but O termination is thermally stable up to (at least) 700 °C. These findings demonstrate thermal control of F termination in Cr2TiC2Tx and offer a first step toward termination engineering this MXene for magnetic applications. Moreover, this work demonstrates high energy electron spectroscopy as a powerful approach for surface characterization in 2D materials. -
Abstract To advance the MXene field, it is crucial to optimize each step of the synthesis process and create a detailed, systematic guide for synthesizing high‐quality MXene that can be consistently reproduced. In this study, a detailed guide is provided for an optimized synthesis of titanium carbide (Ti3C2T
x ) MXene using a mixture of hydrofluoric and hydrochloric acids for the selective etching of the stoichimetric‐Ti3AlC2MAX phase and delamination of the etched multilayered Ti3C2Tx MXene using lithium chloride at 65 °C for 1 h with argon bubbling. The effect of different synthesis variables is investigated, including the stoichiometry of the mixed powders to synthesize Ti3AlC2, pre‐etch impurity removal conditions, selective etching, storage, and drying of MXene multilayer powder, and the subsequent delamination conditions. The synthesis yield and the MXene film electrical conductivity are used as the two parameters to evaluate the MXene quality. Also the MXenes are characterized with scanning electron microscopy, x‐ray diffraction, atomic force microscopy, and ellipsometry. The Ti3C2Tx film made via the optimized method shows electrical conductivity as high as ≈21,000 S/cm with a synthesis yield of up to 38 %. A detailed protocol is also provided for the Ti3C2Tx MXene synthesis as the supporting information for this study. -
Abstract 2D carbides and nitrides (MXenes) are widely recognized for their exceptional promise for numerous applications. However, physical property measurements of their individual monolayers remain very limited despite their importance for revealing the intrinsic physical properties of MXenes. The first mechanical and electrical measurements of individual single‐layer flakes of Nb4C3T
x MXene, which are prepared via an improved synthetic method are reported. Characterization of field‐effect transistor devices based on individual single‐layer Nb4C3Tx flakes shows an electrical conductivity of 1024 ± 165 S cm−1, which is two orders of magnitude higher than the previously reported values for bulk Nb4C3Tx assemblies, and an electron mobility of 0.41 ± 0.27 cm2V−1s−1. Atomic force microscopy nanoindentation measurements of monolayer Nb4C3Tx membranes yield an effective Young's modulus of 386 ± 13 GPa, assuming a membrane thickness of 1.26 nm. This is the highest value reported for nanoindentation measurements of solution‐processable 2D materials, revealing the potential of Nb4C3Tx as a primary component for various mechanical applications. Finally, the agreement between the mechanical properties of 2D Nb4C3Tx MXene and cubic NbC suggests that the extensive experimental data on bulk carbides could be useful for identifying new MXenes with improved functional characteristics. -
MXenes, a new class of 2D transition metal carbides and carbonitrides, show great promise in supercapacitors, Li‐ion batteries, fuel cells, and sensor applications. A unique combination of their metallic conductivity, hydrophilic surface, and excellent mechanical properties renders them attractive for transparent conductive electrode application. Here, a simple, scalable method is proposed to fabricate transparent conductive thin films using delaminated Ti3C2MXene flakes by spray coating. Homogenous films, 5–70 nm thick, are produced at ambient conditions over a large area as shown by scanning electron microscopy and atomic force microscopy. The sheet resistances (
Rs ) range from 0.5 to 8 kΩ sq−1at 40% to 90% transmittance, respectively, which corresponds to figures of merit (the ratio of electronic to optical conductivities,σ DC/σ opt) around 0.5–0.7. Flexible, transparent, and conductive films are also produced and exhibit stableRs values at up to 5 mm bend radii. Furthermore, the films' optoelectronic properties are tuned by chemical or electrochemical intercalation of cations. The films show reversible changes of transmittance in the UV–visible region during electrochemical intercalation/deintercalation of tetramethylammonium hydroxide. This work shows the potential of MXenes to be used as transparent conductors in electronic, electrochromic, and sensor applications. -
Metal-mediated cross-coupling reactions offer organic chemists a wide array of stereo- and chemically-selective reactions with broad applications in fine chemical and pharmaceutical synthesis.1 Current batch-based synthesis methods are beginning to be replaced with flow chemistry strategies to take advantage of the improved consistency and process control methods offered by continuous flow systems.2,3 Most cross-coupling chemistries still encounter several issues in flow using homogeneous catalysis, including expensive catalyst recovery and air sensitivity due to the chemical nature of the catalyst ligands.1 To mitigate some of these issues, a ligand-free heterogeneous catalysis reaction was developed using palladium (Pd) loaded into a polymeric network of a silicone elastomer, poly(hydromethylsiloxane) (PHMS), that is not air sensitive and can be used with mild reaction solvents (ethanol and water).4 In this work we present a novel method of producing soft catalytic microparticles using a multiphase flow-focusing microreactor and demonstrate their application for continuous Suzuki-Miyaura cross-coupling reactions. The catalytic microparticles are produced in a coaxial glass capillary-based 3D flow-focusing microreactor. The microreactor consists of two precursors, a cross-linking catalyst in toluene and a mixture of the PHMS polymer and a divinyl cross-linker. The dispersed phase containing the polymer, cross-linker, and cross-linking catalyst is continuously mixed and then formed into microdroplets by the continuous phase of water and surfactant (sodium dodecyl sulfate) introduced in a counter-flow configuration. Elastomeric microdroplets with a diameter ranging between 50 to 300 micron are produced at 25 to 250 Hz with a size polydispersity less than 3% in single stream production. The physicochemical properties of the elastomeric microparticles such as particle swelling/softness can be tuned using the ratio of cross-linker to polymer as well as the ratio of polymer mixture to solvent during the particle formation. Swelling in toluene can be tuned up to 400% of the initial particle volume by reducing the concentration of cross-linker in the mixture and increasing the ratio of polymer to solvent during production.5 After the particles are produced and collected, they are transferred into toluene containing palladium acetate, allowing the particles to incorporate the palladium into the polymer network and then reduce the palladium to Pd0 with the Si-H functionality present on the PHMS backbones. After the reduction, the Pd-loaded particles can be washed and dried for storage or switched into an ethanol/water solution for loading into a micro-packed bed reactor (µ-PBR) for continuous organic synthesis. The in-situ reduction of Pd within the PHMS microparticles was confirmed using energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and focused ion beam-SEM, and TEM techniques. In the next step, we used the developed µ-PBR to conduct continuous organic synthesis of 4-phenyltoluene by Suzuki-Miyaura cross-coupling of 4-iodotoluene and phenylboronic acid using potassium carbonate as the base. Catalyst leaching was determined to only occur at sub ppm concentrations even at high solvent flow rates after 24 h of continuous run using inductively coupled plasma mass spectrometry (ICP-MS). The developed µ-PBR using the elastomeric microparticles is an important initial step towards the development of highly-efficient and green continuous manufacturing technologies in the pharma industry. In addition, the developed elastomeric microparticle synthesis technique can be utilized for the development of a library of other chemically cross-linkable polymer/cross-linker pairs for applications in organic synthesis, targeted drug delivery, cell encapsulation, or biomedical imaging. References 1. Ruiz-Castillo P, Buchwald SL. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem Rev. 2016;116(19):12564-12649. 2. Adamo A, Beingessner RL, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61 LP-67. 3. Jensen KF. Flow Chemistry — Microreaction Technology Comes of Age. 2017;63(3). 4. Stibingerova I, Voltrova S, Kocova S, Lindale M, Srogl J. Modular Approach to Heterogenous Catalysis. Manipulation of Cross-Coupling Catalyst Activity. Org Lett. 2016;18(2):312-315. 5. Bennett JA, Kristof AJ, Vasudevan V, Genzer J, Srogl J, Abolhasani M. Microfluidic synthesis of elastomeric microparticles: A case study in catalysis of palladium-mediated cross-coupling. AIChE J. 2018;0(0):1-10.more » « less