skip to main content


Title: Design and Development of Fe-Catalyzed Intra- and Intermolecular Carbofunctionalization of Vinyl Cyclopropanes
Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of the alkyl radical intermediates out of the solvent cage to participate in an intra- or -intermolecular radical cascade with the VCP followed by re-entering the Fe radical cross-coupling cycle to undergo selective C(sp2)-C(sp3) bond formation. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.  more » « less
Award ID(s):
1751568
NSF-PAR ID:
10133144
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemistry preprint archive
ISSN:
1574-0331
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of alkyl radical intermediates out of the solvent cage to participate in an intra- or intermolecular radical cascade with a range of VCPs followed by re-entering the Fe radical cross-coupling cycle to undergo (stereo)selective C(sp 2 )–C(sp 3 ) bond formation. This work provides a proof-of-concept of the use of vinyl cyclopropanes as synthetically useful 1,5-synthons in Fe-catalyzed conjunctive cross-couplings with alkyl halides and aryl/vinyl Grignard reagents. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations. 
    more » « less
  2. Abstract

    To achieve long‐range charge transport/separation and, in turn, bolster the efficiency of modern photovoltaic devices, new molecular scaffolds are needed that can self‐assemble in two‐dimensional (2D) arrays while maintaining both intra‐ and intermolecular electronic coupling. In an isolated molecule of pillarene, a single hole delocalizes intramolecularly via hopping amongst the circularly arrayed hydroquinone ether rings. The crystallization of pillarene cation radical produces a 2D self‐assembly with three intermolecular dimeric (sandwich‐like) contacts. Surprisingly, each pillarene in the crystal lattice bears a fractional formal charge of +1.5. This unusual stoichiometry of oxidized pillarene in crystals arises from effective charge distribution within the 2D array via an interplay of intra‐ and intermolecular electronic couplings. This important finding is expected to help advance the rational design of efficient solid‐state materials for long‐range charge transfer.

     
    more » « less
  3. Abstract

    To achieve long‐range charge transport/separation and, in turn, bolster the efficiency of modern photovoltaic devices, new molecular scaffolds are needed that can self‐assemble in two‐dimensional (2D) arrays while maintaining both intra‐ and intermolecular electronic coupling. In an isolated molecule of pillarene, a single hole delocalizes intramolecularly via hopping amongst the circularly arrayed hydroquinone ether rings. The crystallization of pillarene cation radical produces a 2D self‐assembly with three intermolecular dimeric (sandwich‐like) contacts. Surprisingly, each pillarene in the crystal lattice bears a fractional formal charge of +1.5. This unusual stoichiometry of oxidized pillarene in crystals arises from effective charge distribution within the 2D array via an interplay of intra‐ and intermolecular electronic couplings. This important finding is expected to help advance the rational design of efficient solid‐state materials for long‐range charge transfer.

     
    more » « less
  4. Abstract

    Intra‐ and intermolecular ordering greatly impacts the electronic and optoelectronic properties of semiconducting polymers. The interrelationship between ordering of alkyl sidechains and conjugated backbones has yet to be fully detailed, despite much prior effort. Here, the discovery of a highly ordered alkyl sidechain phase in six representative semiconducting polymers, determined from distinct spectroscopic and diffraction signatures, is reported. The sidechain ordering exhibits unusually large coherence lengths (≥70 nm), induces torsional/twisting backbone disorder, and results in a vertically multilayered nanostructure with ordered sidechain layers alternating with disordered backbone layers. Calorimetry and in situ variable temperature scattering measurements in a model system poly{4‐(5‐(4,8‐bis(3‐butylnonyl)‐6‐methylbenzo[1,2‐b:4,5‐b′]dithiophen‐2‐yl)thiophen‐2‐yl)‐2‐(2‐butyloctyl)‐5,6‐difluoro‐7‐(5‐methylthiophen‐2‐yl)‐2H‐benzo[d][1,2,3]triazole} (PBnDT‐FTAZ) clearly delineate this competition of ordering that prevents simultaneous long‐range order of both moieties. The long‐range sidechain ordering can be exploited as a transient state to fabricate PBnDT‐FTAZ films with an atypical edge‐on texture and 2.5× improved field‐effect transistor mobility. The observed influence of ordering between the moieties implies that improved molecular design can produce synergistic rather than destructive ordering effects. Given the large sidechain coherence lengths observed, such synergistic ordering should greatly improve the coherence length of backbone ordering and thereby improve electronic and optoelectronic properties such as charge transport and exciton diffusion lengths.

     
    more » « less
  5. We employ natural bond orbital and natural resonance theory tools to analyze the enigmatic properties of the C2v-symmetric isomer of chlorine dioxide radical (ClO2), whose many challenges to Pauling-type localized bonding concepts were recognized by Linus Pauling himself. Although spin-contamination is minimal in this species, ClO2exhibits an unusually strong form of “different Lewis structures for different spins” bonding pattern, intrinsically outside the framework of “maximal pairing” concepts. We show how the novel spin-unpaired donor–acceptor interactions lead to weakened bonding in the supramolecular domain of polyradical (ClO2)nhomoclusters and aqueous ClO2(H2O)nheteroclusters. Despite feeble binding energies and large inter-radical separations, the polyradical clusters are found to maintain coherent spin patterns in each cluster component, attesting to the quantal donor–acceptor nature of their interactions and the cooperative and anticooperative couplings that govern intra- and intermolecular spin distributions in such spin-clusters.

     
    more » « less