skip to main content


Title: An Activity‐Based Sensing Approach for the Detection of Cyclooxygenase‐2 in Live Cells
Abstract

Cyclooxygenase‐2 (COX‐2) overexpression is prominent in inflammatory diseases, neurodegenerative disorders, and cancer. Directly monitoring COX‐2 activity within its native environment poses an exciting approach to account for and illuminate the effect of the local environments on protein activity. Herein, we report the development of CoxFluor, the first activity‐based sensing approach for monitoring COX‐2 within live cells with confocal microscopy and flow cytometry. CoxFluor strategically links a natural substrate with a dye precursor to engage both the cyclooxygenase and peroxidase activities of COX‐2. This catalyzes the release of resorufin and the natural product, as supported by molecular dynamics and ensemble docking. CoxFluor enabled the detection of oxygen‐dependent changes in COX‐2 activity that are independent of protein expression within live macrophage cells.

 
more » « less
PAR ID:
10133591
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
8
ISSN:
1433-7851
Page Range / eLocation ID:
p. 3307-3314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cyclooxygenase‐2 (COX‐2) overexpression is prominent in inflammatory diseases, neurodegenerative disorders, and cancer. Directly monitoring COX‐2 activity within its native environment poses an exciting approach to account for and illuminate the effect of the local environments on protein activity. Herein, we report the development of CoxFluor, the first activity‐based sensing approach for monitoring COX‐2 within live cells with confocal microscopy and flow cytometry. CoxFluor strategically links a natural substrate with a dye precursor to engage both the cyclooxygenase and peroxidase activities of COX‐2. This catalyzes the release of resorufin and the natural product, as supported by molecular dynamics and ensemble docking. CoxFluor enabled the detection of oxygen‐dependent changes in COX‐2 activity that are independent of protein expression within live macrophage cells.

     
    more » « less
  2. Abstract

    A biological reaction network may serve multiple purposes, processing more than one input and impacting downstream processes via more than one output. These networks operate in a dynamic cellular environment in which the levels of network components may change within cells and across cells. Recent evidence suggests that protein concentration variability could explain cell fate decisions. However, systems with multiple inputs, multiple outputs, and changing input concentrations have not been studied in detail due to their complexity. Here, we take a systems biochemistry approach, combining physiochemical modeling and information theory, to investigate how cyclooxygenase-2 (COX-2) processes simultaneous input signals within a complex interaction network. We find that changes in input levels affect the amount of information transmitted by the network, as does the correlation between those inputs. This, and the allosteric regulation of COX-2 by its substrates, allows it to act as a signal integrator that is most sensitive to changes in relative input levels.

     
    more » « less
  3. Vertebrate development is regulated by several complex well-characterized morphogen signaling pathways, transcription factors, and structural proteins, but less is known about the enzymatic pathways that regulate early development. We have identified that factors from the inflammation-mediating cyclooxygenase (COX) signaling pathway are expressed at early stages of development in avian embryos. Using Gallus gallus (chicken) as a research model, we characterized the spatiotemporal expression of a subset of genes and proteins in the COX pathway during early neural development stages. Specifically, here we show expression patterns of COX-1, COX-2, and microsomal prostaglandin E synthase-2 (mPGES-2) as well as the genes encoding these enzymes (PTGS1, PTGS2, and PTGES-2). Unique expression patterns of individual players within the COX pathway suggest that they may play non-canonical/non-traditional roles in the embryo compared to their roles in the adult. Future work should examine the function of the COX pathway in tissue specification and morphogenesis and determine if these expression patterns are conserved across species. 
    more » « less
  4. The type III secretion system (T3SS) effector EseN is encoded on the Edwardsiella ictaluri chromosome and is homologous to a family of T3SS effector proteins with phosphothreonine lyase activity. Previously we demonstrated that E. ictaluri invasion activates extracellular signal-regulated kinases 1 and 2 (ERK1/2) early in the infection, which are subsequently inactivated by EseN. Comparative transcriptomic analysis showed a total of 753 significant differentially expressed genes in head-kidney-derived macrophages (HKDM) infected with an EseN mutant (∆EseN) compared to HKDM infected with wild-type (WT) strains. This data strongly indicates classical activation of macrophages (the M1 phenotype) in response to E. ictaluri infection and a significant role for EseN in the manipulation of this process. Our data also indicates that E. ictaluri EseN is involved in the modulation of pathways involved in the immune response to infection and expression of several transcription factors, including NF-κβ (c-rel and relB), creb3L4, socs6 and foxo3a. Regulation of transcription factors leads to regulation of proinflammatory interleukins (IL-8, IL-12a, IL-15, IL-6) and cyclooxygenase-2 (COX-2) expression. Inhibition of COX-2 mRNA by WT E. ictaluri leads to decreased production of prostaglandin E2 (PGE2), which is the product of COX-2 activity. Collectively, our results indicate that E. ictaluri EseN is an important player in the modulation of host immune responses to E.ictaluri infection. 
    more » « less
  5. Abstract

    While protein aggregation is a hallmark of many neurodegenerative diseases, acquiring structural information on protein aggregates inside live cells remains challenging. Traditional microscopy does not provide structural information on protein systems. Routinely used fluorescent protein tags, such as Green Fluorescent Protein (GFP), might perturb native structures. Here, we report a counter‐propagating mid‐infrared photothermal imaging approach enabling mapping of secondary structure of protein aggregates in live cells modeling Huntington's disease. By comparing mid‐infrared photothermal spectra of label‐free and GFP‐tagged huntingtin inclusions, we demonstrate that GFP fusions indeed perturb the secondary structure of aggregates. By implementing spectra with small spatial step for dissecting spectral features within sub‐micrometer distances, we reveal that huntingtin inclusions partition into a β‐sheet‐rich core and a ɑ‐helix‐rich shell. We further demonstrate that this structural partition exists only in cells with the [RNQ+] prion state, while [rnq] cells only carry smaller β‐rich non‐toxic aggregates. Collectively, our methodology has the potential to unveil detailed structural information on protein assemblies in live cells, enabling high‐throughput structural screenings of macromolecular assemblies.

     
    more » « less