skip to main content


Title: Dispersion in the Open Ocean Seasonal Pycnocline at Scales of 1–10 km and 1–6 days
Abstract

Results are presented from two dye release experiments conducted in the seasonal thermocline of the Sargasso Sea, one in a region of low horizontal strain rate (~10−6 s−1), the second in a region of intermediate horizontal strain rate (~10−5 s−1). Both experiments lasted ~6 days, covering spatial scales of 1–10 and 1–50 km for the low and intermediate strain rate regimes, respectively. Diapycnal diffusivities estimated from the two experiments were κz = (2–5) × 10−6 m2 s−1, while isopycnal diffusivities were κH = (0.2–3) m2 s−1, with the range in κH being less a reflection of site-to-site variability, and more due to uncertainties in the background strain rate acting on the patch combined with uncertain time dependence. The Site I (low strain) experiment exhibited minimal stretching, elongating to approximately 10 km over 6 days while maintaining a width of ~5 km, and with a notable vertical tilt in the meridional direction. By contrast, the Site II (intermediate strain) experiment exhibited significant stretching, elongating to more than 50 km in length and advecting more than 150 km while still maintaining a width of order 3–5 km. Early surveys from both experiments showed patchy distributions indicative of small-scale stirring at scales of order a few hundred meters. Later surveys show relatively smooth, coherent distributions with only occasional patchiness, suggestive of a diffusive rather than stirring process at the scales of the now larger patches. Together the two experiments provide important clues as to the rates and underlying processes driving diapycnal and isopycnal mixing at these scales.

 
more » « less
NSF-PAR ID:
10133624
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
50
Issue:
2
ISSN:
0022-3670
Page Range / eLocation ID:
p. 415-437
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Horizontal and vertical wavenumbers ( k x , k z ) immediately below the Ozmidov wavenumber ( N 3 / ε ) 1/2 are spectrally distinct from both isotropic turbulence ( k x , k z > 1 cpm) and internal waves as described by the Garrett–Munk (GM) model spectrum ( k z < 0.1 cpm). A towed CTD chain, augmented with concurrent Electromagnetic Autonomous Profiling Explorer (EM-APEX) profiling float microstructure measurements and shipboard ADCP surveys, are used to characterize 2D wavenumber ( k x , k z ) spectra of isopycnal slope, vertical strain, and isopycnal salinity gradient on horizontal wavelengths from 50 m to 250 km and vertical wavelengths of 2–48 m. For k z < 0.1 cpm, 2D spectra of isopycnal slope and vertical strain resemble GM. Integrated over the other wavenumber, the isopycnal slope 1D k x spectrum exhibits a roughly +1/3 slope for k x > 3 × 10 −3 cpm, and the vertical strain 1D k z spectrum a −1 slope for k z > 0.1 cpm, consistent with previous 1D measurements, numerical simulations, and anisotropic stratified turbulence theory. Isopycnal salinity gradient 1D k x spectra have a +1 slope for k x > 2 × 10 −3 cpm, consistent with nonlocal stirring. Turbulent diapycnal diffusivities inferred in the (i) internal wave subrange using a vertical strain-based finescale parameterization are consistent with those inferred from finescale horizonal wavenumber spectra of (ii) isopycnal slope and (iii) isopycnal salinity gradients using Batchelor model spectra. This suggests that horizontal submesoscale and vertical finescale subranges participate in bridging the forward cascade between weakly nonlinear internal waves and isotropic turbulence, as hypothesized by anisotropic turbulence theory. 
    more » « less
  2. Horizontal and vertical wavenumbers (kx, kz) immediately below the Ozmidov wavenumber (N3/ε)1/2 are spectrally distinct from both isotropic turbulence (kx, kz > 1 cpm) and internal waves as described by the Garrett–Munk (GM) model spectrum (kz < 0.1 cpm). A towed CTD chain, augmented with concurrent Electromagnetic Autonomous Profiling Explorer (EM-APEX) profiling float microstructure measurements and shipboard ADCP surveys, are used to characterize 2D wavenumber (kx, kz) spectra of isopycnal slope, vertical strain, and isopycnal salinity gradient on horizontal wavelengths from 50 m to 250 km and vertical wavelengths of 2–48 m. For kz < 0.1 cpm, 2D spectra of isopycnal slope and vertical strain resemble GM. Integrated over the other wavenumber, the isopycnal slope 1D kx spectrum exhibits a roughly +1/3 slope for kx > 3 × 10−3 cpm, and the vertical strain 1D kz spectrum a −1 slope for kz > 0.1 cpm, consistent with previous 1D measurements, numerical simulations, and anisotropic stratified turbulence theory. Isopycnal salinity gradient 1D kx spectra have a +1 slope for kx > 2 × 10−3 cpm, consistent with nonlocal stirring. Turbulent diapycnal diffusivities inferred in the (i) internal wave subrange using a vertical strain-based finescale parameterization are consistent with those inferred from finescale horizonal wavenumber spectra of (ii) isopycnal slope and (iii) isopycnal salinity gradients using Batchelor model spectra. This suggests that horizontal submesoscale and vertical finescale subranges participate in bridging the forward cascade between weakly nonlinear internal waves and isotropic turbulence, as hypothesized by anisotropic turbulence theory. 
    more » « less
  3. Abstract

    Generating mechanisms and parameterizations for enhanced turbulence in the wake of a seamount in the path of the Kuroshio are investigated. Full-depth profiles of finescale temperature, salinity, horizontal velocity, and microscale thermal-variance dissipation rate up- and downstream of the ∼10-km-wide seamount were measured with EM-APEX profiling floats and ADCP moorings. Energetic turbulent kinetic energy dissipation ratesand diapycnal diffusivitiesabove the seamount flanks extend at least 20 km downstream. This extended turbulent wake length is inconsistent with isotropic turbulence, which is expected to decay in less than 100 m based on turbulence decay time ofN−1∼ 100 s and the 0.5 m s−1Kuroshio flow speed. Thus, the turbulent wake must be maintained by continuous replenishment which might arise from (i) nonlinear instability of a marginally unstable vortex wake, (ii) anisotropic stratified turbulence with expected downstream decay scales of 10–100 km, and/or (iii) lee-wave critical-layer trapping at the base of the Kuroshio. Three turbulence parameterizations operating on different scales, (i) finescale, (ii) large-eddy, and (iii) reduced-shear, are tested. Averageεvertical profiles are well reproduced by all three parameterizations. Vertical wavenumber spectra for shear and strain are saturated over 10–100 m vertical wavelengths comparable to water depth with spectral levels independent ofεand spectral slopes of −1, indicating that the wake flows are strongly nonlinear. In contrast, vertical divergence spectral levels increase withε.

     
    more » « less
  4. null (Ed.)
    Abstract Stirring in the subsurface Southern Ocean is examined using RAFOS float trajectories, collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), along with particle trajectories from a regional eddy permitting model. A central question is the extent to which the stirring is local, by eddies comparable in size to the pair separation, or nonlocal, by eddies at larger scales. To test this, we examine metrics based on averaging in time and in space. The model particles exhibit nonlocal dispersion, as expected for a limited resolution numerical model that does not resolve flows at scales smaller than ~10 days or ~20–30 km. The different metrics are less consistent for the RAFOS floats; relative dispersion, kurtosis, and relative diffusivity suggest nonlocal dispersion as they are consistent with the model within error, while finite-size Lyapunov exponents (FSLE) suggests local dispersion. This occurs for two reasons: (i) limited sampling of the inertial length scales and a relatively small number of pairs hinder statistical robustness in time-based metrics, and (ii) some space-based metrics (FSLE, second-order structure functions), which do not average over wave motions and are reflective of the kinetic energy distribution, are probably unsuitable to infer dispersion characteristics if the flow field includes energetic wave motions that do not disperse particles. The relative diffusivity, which is also a space-based metric, allows averaging over waves to infer the dispersion characteristics. Hence, given the error characteristics of the metrics and data used here, the stirring in the DIMES region is likely to be nonlocal at scales of 5–100 km. 
    more » « less
  5. Within the pycnocline, where diapycnal mixing is suppressed, both the vertical movement (uplift) of isopycnal surfaces and upward motion along sloping isopycnals supply nutrients to the euphotic layer, but the relative importance of each of these mechanisms is unknown. We present a method for decomposing vertical velocity w into two components in a Lagrangian frame: vertical velocity along sloping isopycnal surfaces [Formula: see text] and the adiabatic vertical velocity of isopycnal surfaces [Formula: see text]. We show that [Formula: see text], where [Formula: see text] is the isopycnal slope and [Formula: see text] is the geometric aspect ratio of the flow, and that [Formula: see text] accounts for 10%–25% of the total vertical velocity w for isopycnal slopes representative of the midlatitude pycnocline. We perform the decomposition of w in a process study model of a midlatitude eddying flow field generated with a range of isopycnal slopes. A spectral decomposition of the velocity components shows that while [Formula: see text] is the largest contributor to vertical velocity, [Formula: see text] is of comparable magnitude at horizontal scales less than about 10 km, that is, at submesoscales. Increasing the horizontal grid resolution of models is known to increase vertical velocity; this increase is disproportionately due to better resolution of [Formula: see text], as is shown here by comparing 1- and 4-km resolution model runs. Along-isopycnal vertical transport can be an important contributor to the vertical flux of tracers, including oxygen, nutrients, and chlorophyll, although we find weak covariance between vertical velocity and nutrient anomaly in our model.

     
    more » « less