skip to main content


Title: Tandem Molecular Dynamics and Continuum Studies of Shock‐Induced Pore Collapse in TATB
Abstract

All‐atom molecular dynamics (MD) and Eulerian continuum simulations, performed using the LAMMPS and SCIMITAR3D codes, respectively, were used to study thermo‐mechanical aspects of the shock‐induced collapse of an initially cylindrical 50 nm diameter pore in single crystals of 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB). Three impact speeds, 0.5 km s−1, 1.0 km s−1and 2.0 km s−1, were used to generate the shocks. These impact conditions are expected to yield collapse mechanisms ranging from predominantly visco‐plastic to hydrodynamic. For the MD studies, three crystal orientations (relative to shock‐propagation direction) were examined that span the limiting cases with respect to the crystalline anisotropy in TATB. An isotropic constitutive model was used for the continuum simulations, thus crystal anisotropy is absent. The evolution of spatiotemporally resolved quantities during collapse is reported including local pressure, temperature, pore size and shape, and material flow. Multiple models for the melting curve and specific heat were studied. Within the isotropic elastic/perfectly plastic continuum framework and for the range of impact conditions studied, the specific heat and melting curve sub‐models are shown to have modest effects on the continuum hotspot predictions in the present inert calculation. Treating the MD predictions as ‘ground truth’, albeit with a classical rather than quantum‐like heat capacity, it is clear that – at a minimum – an extension of the constitutive model to account for crystal plasticity and anisotropic strength will be required for a high‐fidelity continuum description.

 
more » « less
NSF-PAR ID:
10133684
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Propellants, Explosives, Pyrotechnics
Volume:
45
Issue:
2
ISSN:
0721-3115
Page Range / eLocation ID:
p. 196-222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Initial hot spot temperatures and temperature evolutions for 4 polymer‐bound explosives under shock compression by laser‐driven flyer plates at speeds from 1.5–4.5 km s−1are presented. A new averaging routine allows for improved signal to noise in shock compressed impactor experiments and yields temperature dynamics which are more accurate than has been previously available. The PBX formulations studied here consist of either pentaerythritol tetranitrate (PETN), 1,3,5‐trinitro‐1,3,5‐triazinane (RDX), 2,4,6‐trinitrotoluene (TNT), or 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB) in a 80/20 wt.% mixture with a silicone elastomer binder. The temperature dynamics demonstrate a unique shock strength dependence for each base explosive. The initial hot spot temperature and its evolution in time are shown to be indicative of chemistry occurring within the reaction zone of the four explosives. The number density of hot spots is qualitatively inferred from the spatially‐averaged emissivity and appears to increase exponentially with shock strength. An increased emissivity for formulations consisting of TNT and TATB is consistent with carbon‐rich explosives and in increased hot spot volume. Qualitative conclusions about sensitivity were drawn from the initial hot spot temperature and rate at which the number of hot spots appear to grow.

     
    more » « less
  2. Abstract

    The core of this research is separated into three domains, the ultrahigh strain rate response of elastomeric polymers, laser‐induced shock waves , and terahertz time‐domain spectroscopy (THz‐TDS). Elastomers, e.g., polyurea, constitute an advance class of materials suitable for many applications, specifically in high impact loading scenarios, thus, a laser‐induced shock wave (LSW) experimental technique is used to investigate the mechanical response of shock‐loaded polyurea. LSW can submit samples to a strain rate exceeding 106s−1at low strains, enabling determination of material intrinsic failure modes. The large deformation induced during shock loading may alter the macromolecule structure, which can only be detected spectroscopically. Therefore, this research incorporated terahertz bulk spectroscopy to detect and report molecular conformational changes. Microscopy techniques were also used to elucidate changes in the microscale properties, morphology, and topography. The interpretation of the results explicated brittle failure in terms of partial and total spallation and, remarkably, ductile failure leading to plastic deformation, including plastic bulging and adiabatic shearing, not previously associated with LSW technique. Furthermore, spectral changes found in the terahertz regime substantiated the validity of terahertz spectroscopy in elucidating the underlying mechanism associated with the impact mitigating properties of dynamically loaded polyurea.

     
    more » « less
  3. Abstract

    A growing number of core-collapse supernovae (SNe) that show evidence for interaction with dense circumstellar medium (CSM) are accompanied by “precursor” optical emission rising weeks to months prior to the explosion. The precursor luminosities greatly exceed the Eddington limit of the progenitor star, implying that they are accompanied by substantial mass loss. Here, we present a semi-analytic model for SN precursor light curves, which we apply to constrain the properties and mechanisms of the pre-explosion mass loss. We explore two limiting mass-loss scenarios: (1) an “eruption” arising from shock breakout following impulsive energy deposition below the stellar surface; and (2) a steady “wind,” due to sustained heating of the progenitor envelope. The eruption model, which resembles a scaled-down version of Type IIP SNe, can explain the luminosities and timescales of well-sampled precursors, for ejecta masses ∼ 0.1–1Mand velocities ∼ 100–1000 km s−1. By contrast, the steady wind scenario cannot explain the highest precursor luminosities ≳ 1041erg s−1, under the constraint that the total ejecta mass does not exceed the entire progenitor mass (though the less luminous SN 2020tlf precursor can be explained by a mass-loss rate ∼ 1Myr−1). However, shock interaction between the wind and pre-existing (earlier ejected) CSM may boost its radiative efficiency and mitigate this constraint. In both the eruption and wind scenarios, the precursor ejecta forms compact (≲1015cm) optically thick CSM at the time of core collapse; though only directly observable via rapid post-explosion spectroscopy (≲ a few days before being overtaken by the SN ejecta), this material can boost the SN luminosity via shock interaction.

     
    more » « less
  4. Chief-in-Editor: Jacob Fish Senior Advisor: J. Tinsley Oden Associate Editors: Somnath Ghosh, Arif Masud (Ed.)

    Aspects of plastic anisotropy in damage accumulation are considered for a class of hexagonal crystals that deform by combined slip and twinning. Focus is placed on crystallographic aspects that are currently absent from constitutive formulations of ductile damage. To this end, three-dimensional finite-element calculations are carried out using a cubic unit cell containing a single void embedded in a crystal matrix. Plastic flow in the latter is described using crystal plasticity with parameters representative of single crystal pure magnesium. The effect of void oblateness is analyzed in some detail, as voids often form as blunted microcracks in Mg alloys. The analyses reveal two aspects peculiar to twinning-mediated void growth: (1) insensitivity of the effective stress-strain response to void oblateless and (2) a plastic auxetic effect. Both aspects manifest under certain circumstances. Some implications in terms of incorporating the uncovered crystallographic aspects in coupled plasticity-damage formulations of anisotropic materials are discussed.

     
    more » « less