skip to main content


Title: Meltos: multi-sample tumor phylogeny reconstruction for structural variants
Abstract Motivation We propose Meltos, a novel computational framework to address the challenging problem of building tumor phylogeny trees using somatic structural variants (SVs) among multiple samples. Meltos leverages the tumor phylogeny tree built on somatic single nucleotide variants (SNVs) to identify high confidence SVs and produce a comprehensive tumor lineage tree, using a novel optimization formulation. While we do not assume the evolutionary progression of SVs is necessarily the same as SNVs, we show that a tumor phylogeny tree using high-quality somatic SNVs can act as a guide for calling and assigning somatic SVs on a tree. Meltos utilizes multiple genomic read signals for potential SV breakpoints in whole genome sequencing data and proposes a probabilistic formulation for estimating variant allele fractions (VAFs) of SV events. Results In order to assess the ability of Meltos to correctly refine SNV trees with SV information, we tested Meltos on two simulated datasets with five genomes in both. We also assessed Meltos on two real cancer datasets. We tested Meltos on multiple samples from a liposarcoma tumor and on a multi-sample breast cancer data (Yates et al., 2015), where the authors provide validated structural variation events together with deep, targeted sequencing for a collection of somatic SNVs. We show Meltos has the ability to place high confidence validated SV calls on a refined tumor phylogeny tree. We also showed the flexibility of Meltos to either estimate VAFs directly from genomic data or to use copy number corrected estimates. Availability and implementation Meltos is available at https://github.com/ih-lab/Meltos. Contact imh2003@med.cornell.edu Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1840275
NSF-PAR ID:
10133749
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Bioinformatics
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Cancer is characterized by intra-tumor heterogeneity, the presence of distinct cell populations with distinct complements of somatic mutations, which include single-nucleotide variants (SNVs) and copy-number aberrations (CNAs). Single-cell sequencing technology enables one to study these cell populations at single-cell resolution. Phylogeny estimation algorithms that employ appropriate evolutionary models are key to understanding the evolutionary mechanisms behind intra-tumor heterogeneity.

    Results

    We introduce Single-cell Phylogeny Reconstruction (SPhyR), a method for tumor phylogeny estimation from single-cell sequencing data. In light of frequent loss of SNVs due to CNAs in cancer, SPhyR employs the k-Dollo evolutionary model, where a mutation can only be gained once but lost k times. Underlying SPhyR is a novel combinatorial characterization of solutions as constrained integer matrix completions, based on a connection to the cladistic multi-state perfect phylogeny problem. SPhyR outperforms existing methods on simulated data and on a metastatic colorectal cancer.

    Availability and implementation

    SPhyR is available on https://github.com/elkebir-group/SPhyR.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract

    Intra-tumor heterogeneity renders the identification of somatic single-nucleotide variants (SNVs) a challenging problem. In particular, low-frequency SNVs are hard to distinguish from sequencing artifacts. While the increasing availability of multi-sample tumor DNA sequencing data holds the potential for more accurate variant calling, there is a lack of high-sensitivity multi-sample SNV callers that utilize these data. Here we report Moss, a method to identify low-frequency SNVs that recur in multiple sequencing samples from the same tumor. Moss provides any existing single-sample SNV caller the ability to support multiple samples with little additional time overhead. We demonstrate that Moss improves recall while maintaining high precision in a simulated dataset. On multi-sample hepatocellular carcinoma, acute myeloid leukemia and colorectal cancer datasets, Moss identifies new low-frequency variants that meet manual review criteria and are consistent with the tumor’s mutational signature profile. In addition, Moss detects the presence of variants in more samples of the same tumor than reported by the single-sample caller. Moss’ improved sensitivity in SNV calling will enable more detailed downstream analyses in cancer genomics.

     
    more » « less
  3. Abstract Background Every tumor is composed of heterogeneous clones, each corresponding to a distinct subpopulation of cells that accumulated different types of somatic mutations, ranging from single-nucleotide variants (SNVs) to copy-number aberrations (CNAs). As the analysis of this intra-tumor heterogeneity has important clinical applications, several computational methods have been introduced to identify clones from DNA sequencing data. However, due to technological and methodological limitations, current analyses are restricted to identifying tumor clones only based on either SNVs or CNAs, preventing a comprehensive characterization of a tumor’s clonal composition. Results To overcome these challenges, we formulate the identification of clones in terms of both SNVs and CNAs as a integration problem while accounting for uncertainty in the input SNV and CNA proportions. We thus characterize the computational complexity of this problem and we introduce PACTION (PArsimonious Clone Tree integratION), an algorithm that solves the problem using a mixed integer linear programming formulation. On simulated data, we show that tumor clones can be identified reliably, especially when further taking into account the ancestral relationships that can be inferred from the input SNVs and CNAs. On 49 tumor samples from 10 prostate cancer patients, our integration approach provides a higher resolution view of tumor evolution than previous studies. Conclusion PACTION is an accurate and fast method that reconstructs clonal architecture of cancer tumors by integrating SNV and CNA clones inferred using existing methods. 
    more » « less
  4. Abstract Motivation

    Single-nucleotide variants (SNVs) are the most common variations in the human genome. Recently developed methods for SNV detection from single-cell DNA sequencing data, such as SCIΦ and scVILP, leverage the evolutionary history of the cells to overcome the technical errors associated with single-cell sequencing protocols. Despite being accurate, these methods are not scalable to the extensive genomic breadth of single-cell whole-genome (scWGS) and whole-exome sequencing (scWES) data.

    Results

    Here, we report on a new scalable method, Phylovar, which extends the phylogeny-guided variant calling approach to sequencing datasets containing millions of loci. Through benchmarking on simulated datasets under different settings, we show that, Phylovar outperforms SCIΦ in terms of running time while being more accurate than Monovar (which is not phylogeny-aware) in terms of SNV detection. Furthermore, we applied Phylovar to two real biological datasets: an scWES triple-negative breast cancer data consisting of 32 cells and 3375 loci as well as an scWGS data of neuron cells from a normal human brain containing 16 cells and approximately 2.5 million loci. For the cancer data, Phylovar detected somatic SNVs with high or moderate functional impact that were also supported by bulk sequencing dataset and for the neuron dataset, Phylovar identified 5745 SNVs with non-synonymous effects some of which were associated with neurodegenerative diseases.

    Availability and implementation

    Phylovar is implemented in Python and is publicly available at https://github.com/NakhlehLab/Phylovar.

     
    more » « less
  5. Abstract Motivation

    The acquisition of somatic mutations by a tumor can be modeled by a type of evolutionary tree. However, it is impossible to observe this tree directly. Instead, numerous algorithms have been developed to infer such a tree from different types of sequencing data. But such methods can produce conflicting trees for the same patient, making it desirable to have approaches that can combine several such tumor trees into a consensus or summary tree. We introduce The Weighted m-Tumor Tree Consensus Problem (W-m-TTCP) to find a consensus tree among multiple plausible tumor evolutionary histories, each assigned a confidence weight, given a specific distance measure between tumor trees. We present an algorithm called TuELiP that is based on integer linear programming which solves the W-m-TTCP, and unlike other existing consensus methods, allows the input trees to be weighted differently.

    Results

    On simulated data we show that TuELiP outperforms two existing methods at correctly identifying the true underlying tree used to create the simulations. We also show that the incorporation of weights can lead to more accurate tree inference. On a Triple-Negative Breast Cancer dataset, we show that including confidence weights can have important impacts on the consensus tree identified.

    Availability

    An implementation of TuELiP and simulated datasets are available at https://bitbucket.org/oesperlab/consensus-ilp/src/main/.

     
    more » « less