skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Global Estimates of Land Surface Water Fluxes from SMOS and SMAP Satellite Soil Moisture Data
Abstract

In-depth knowledge about the global patterns and dynamics of land surface net water flux (NWF) is essential for quantification of depletion and recharge of groundwater resources. Net water flux cannot be directly measured, and its estimates as a residual of individual surface flux components often suffer from mass conservation errors due to accumulated systematic biases of individual fluxes. Here, for the first time, we provide direct estimates of global NWF based on near-surface satellite soil moisture retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites. We apply a recently developed analytical model derived via inversion of the linearized Richards’ equation. The model is parsimonious, yet yields unbiased estimates of long-term cumulative NWF that is generally well correlated with the terrestrial water storage anomaly from the Gravity Recovery and Climate Experiment (GRACE) satellite. In addition, in conjunction with precipitation and evapotranspiration retrievals, the resultant NWF estimates provide a new means for retrieving global infiltration and runoff from satellite observations. However, the efficacy of the proposed approach over densely vegetated regions is questionable, due to the uncertainty of the satellite soil moisture retrievals and the lack of explicit parameterization of transpiration by deeply rooted plants in the proposed model. Future research is needed to advance this modeling paradigm to explicitly account for plant transpiration.

 
more » « less
NSF-PAR ID:
10133968
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
21
Issue:
2
ISSN:
1525-755X
Page Range / eLocation ID:
p. 241-253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Surface soil moisture (SSM) has been identified as a key climate variable governing hydrologic and atmospheric processes across multiple spatial scales at local, regional, and global levels. The global burgeoning of SSM datasets in the past decade holds a significant potential in improving our understanding of multiscale SSM dynamics. The primary issues that hinder the fusion of SSM data from disparate instruments are (1) different spatial resolutions of the data instruments, (2) inherent spatial variability in SSM caused due to atmospheric and land surface controls, and (3) measurement errors caused due to imperfect retrievals of instruments. We present a data fusion scheme which takes all the above three factors into account using a Bayesian spatial hierarchical model (SHM), combining a geostatistical approach with a hierarchical model. The applicability of the fusion scheme is demonstrated by fusing point, airborne, and satellite data for a watershed exhibiting high spatial variability in Manitoba, Canada. We demonstrate that the proposed data fusion scheme is adept at assimilating and predicting SSM distribution across all three scales while accounting for potential measurement errors caused due to imperfect retrievals. Further validation of the algorithm is required in different hydroclimates and surface heterogeneity as well as for other data platforms for wider applicability.

     
    more » « less
  2. Abstract

    Vegetation water content (VWC) plays a key role in transpiration, plant mortality, and wildfire risk. Although land surface models now often contain plant hydraulics schemes, there are few direct VWC measurements to constrain these models at global scale. One proposed solution to this data gap is passive microwave remote sensing, which is sensitive to temporal changes in VWC. Here, we test that approach by using synthetic microwave observations to constrain VWC and surface soil moisture within the Climate Modeling Alliance Land model. We further investigate the possible utility of sub‐daily observations of VWC, which could be obtained through a satellite in geostationary orbit or combinations of multiple satellites. These high‐temporal‐resolution observations could allow for improved determination of ecosystem parameters, carbon and water fluxes, and subsurface hydraulics, relative to the currently available twice‐daily sun‐synchronous observational patterns. We find that incorporating observations at four different times in the diurnal cycle (such as could be available from two sun‐synchronous satellites) provides a significantly better constraint on water and carbon fluxes than twice‐daily observations do. For example, the root mean square error of projected evapotranspiration and gross primary productivity during drought periods was reduced by approximately 40%, when using four‐times‐daily relative to twice‐daily observations. Adding hourly observations of the entire diurnal cycle did not further improve the inferred parameters and fluxes. Our comparison of observational strategies may be informative in the design of future satellite missions to study plant hydraulics, as well as when using existing remotely sensed data to study vegetation water stress response.

     
    more » « less
  3. Abstract

    Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change.

     
    more » « less
  4. Abstract Root zone soil moisture (RZSM) is a dominant control on crop productivity, land-atmosphere feedbacks, and the hydrologic response of watersheds. Despite its importance, obtaining gap-free daily moisture data remains challenging. For example, remote sensing-based soil moisture products often have gaps arising from limits posed by the presence of clouds and satellite revisit period. Here, we retrieve a proxy of daily RZSM using the actual evapotranspiration (ETa) estimates from Surface Flux Equilibrium Theory (SFET). Our method is calibration-less, parsimonious, and only needs widely available meteorological data and standard land-surface parameters. Evaluation of the retrievals at Oklahoma Mesonet sites shows that our method, overall, matches or outperforms widely available RZSM estimates from three markedly different approaches, viz. remote sensing data based Atmosphere-Land EXchange Inversion (ALEXI) model, the Variable Infiltration Capacity (VIC) model, and the Soil Moisture Active Passive (SMAP) mission RZSM data product. When compared with in-situ observations, unbiased root mean square difference of retrieved RZSM were 0.03 (m 3 m −3 ), 0.06 (m 3 m −3 ), and 0.05 (m 3 m −3 ) for our method, the ALEXI model, and the VIC model, respectively. Better performance of our method is attributed to the use of both SFET for the estimation of ETa and non-parametric kernel-based method used to relate the RZSM with ETa. RZSM from our method may serve as a more accurate and temporally-complete alternative for a variety of applications including mapping of agricultural droughts, assimilation of RZSM for hydrometeorological forecasting, and design of optimal irrigation schedules. 
    more » « less
  5. Abstract

    The terrestrial water cycle links the soil and atmosphere moisture reservoirs through four fluxes: precipitation, evaporation, runoff, and atmospheric moisture convergence (net import of water vapor to balance runoff). Each of these processes is essential for sustaining human and ecosystem well‐being. Predicting how the water cycle responds to changes in vegetation cover remains a challenge. Recently, changes in plant transpiration across the Amazon basin were shown to be associated disproportionately with changes in rainfall, suggesting that even small declines in transpiration (e.g., from deforestation) would lead to much larger declines in rainfall. Here, constraining these findings by the law of mass conservation, we show that in a sufficiently wet atmosphere, forest transpiration can control atmospheric moisture convergence such that increased transpiration enhances atmospheric moisture import and results in water yield. Conversely, in a sufficiently dry atmosphere increased transpiration reduces atmospheric moisture convergence and water yield. This previously unrecognized dichotomy can explain the otherwise mixed observations of how water yield responds to re‐greening, as we illustrate with examples from China's Loess Plateau. Our analysis indicates that any additional precipitation recycling due to additional vegetation increases precipitation but decreases local water yield and steady‐state runoff. Therefore, in the drier regions/periods and early stages of ecological restoration, the role of vegetation can be confined to precipitation recycling, while once a wetter stage is achieved, additional vegetation enhances atmospheric moisture convergence and water yield. Recent analyses indicate that the latter regime dominates the global response of the terrestrial water cycle to re‐greening. Evaluating the transition between regimes, and recognizing the potential of vegetation for enhancing moisture convergence, are crucial for characterizing the consequences of deforestation as well as for motivating and guiding ecological restoration.

     
    more » « less