skip to main content


Title: Production and Characterization of Graphene and Other 2-dimensional Nanomaterials: An AP High School Inquiry Lab (Curriculum Exchange)
Production and Characterization of Graphene and Other 2-dimensional Nanomaterials: An AP High School Inquiry Lab (Curriculum Exchange)According to the National Nanotechnology Initiative, nanoscience and nanotechnology areexpected to play key roles in developing solutions to some of our greatest global engineeringchallenges in energy, medicine, security, and scientific discovery. There is high expectation thatdevelopments in nanotechnology will lead to new job creation and become an economic driverwith new direction for research and development coming from nano-enabled products. In light ofthe potential economic and national security implications, it is imperative that we support thedevelopment of the next generation of the high school curriculum as a way to motivate studentstowards pursuing education and careers in nanotechnology. Recent advances in nanomaterialsprocessing, particularly 2-dimensional nanomaterials synthesis, present the opportunity tointegrate nanotechnology curriculum into high schools in safe and relatively inexpensivemanners. The multifunctional characteristics of 2-dimensional nanomaterials make themattractive for printable and flexible electronics, nanostructured thermoelectrics, photovoltaics,batteries, and biological and chemical sensors. Thus, 2-dimensional nanomaterials provide anideal context for high school students to investigate the principles of nanoscience andnanotechnology. In our work, we present an Advanced Placement (AP) Chemistry Inquiry Laboratory (CIL),which is being implemented at Centennial High School in Meridian, Idaho. The CIL is aligned toNational College Board requirements for AP Chemistry courses as well as Next GenerationScience Standards. The laboratory is designed to encompass approximately five hours of time,including teacher preparation time, pre-laboratory activities, materials synthesis andcharacterization, and a field trip to a local industry partner for scanning electron microscopyanalysis of the resultant nanomaterials. Students are organized into small groups under thecontext that they are working to produce and characterize nanomaterials as part of an industryresearch team. To synthesis the 2-dimensional nanomaterials, students use cosolvent exfoliationof layered materials such as graphite, MoS2, WS2, and hBN. The students must then use opticalspectroscopy and electrical characterization techniques to determine if their material is aconductor, semiconductor, or an insulator. The students then use scanning electron microscopyto image the morphology of the 2-dimensional nanoflakes they produced, which exposes thestudents to advanced nanoscale characterization techniques.  more » « less
Award ID(s):
1658076
NSF-PAR ID:
10134466
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference & Exposition
Page Range / eLocation ID:
26.1257.1 to 26.1257.3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Nanoscience and nanotechnology play a significant role in every field of our society. Nanotechnology is the backbone of high-tech industries and widely used in consumer products and industrial applications. Therefore, it is essential to highlight the importance of nanoscience and nanotechnology to undergraduate students and explain the science behind nanotechnology. For this purpose, an upper-level elective mechanical engineering course, Nanoscale Science and Engineering, is designed and added to the mechanical and mechatronic engineering curriculum. This course introduces students to the interdisciplinary field of nanoscience and engineering including the areas of engineering, materials science, chemistry, and physics. The topics covered include advanced materials, synthesis, and modification of nanomaterials, properties of nanomaterials, materials characterization, nanofabrication methods, and applications. It has three modules, which are formal lectures, guest speakers, and projects. Projects will help students learn to conduct a literature search, critically review scientific articles, and learn advanced materials characterization techniques on a given topic. They will further have a chance to propose their own ideas for potential applications and asked to give a detailed methodology to execute the project. In this work-in-progress study, we present the impact of the Nanoscale Science and Engineering course on undergraduate mechanical and mechatronic engineering students. Students were invited to complete a survey at the beginning of the semester, which will be also given to the students, at the end of the semester. The survey consists of 15 questions, which are aimed to analyze the pre-existing knowledge of students in nanotechnology-related topics and their interest level to increase their knowledge and advance their career in a nanotechnology-related field. In order to assess the impact of the course on students, the results of the survey will be compared. Student demographics will be included in the results. Possible changes in course content to improve student engagement in nanotechnology will be discussed. The purpose of this course is to introduce undergraduate engineering students to nanotechnology. The inclusion of Nanoscale Science and Engineering course to the undergraduate engineering curriculum has a significant role in the advancement of nanotechnology. Students graduating with a solid understanding of broad applications of nanotechnology and advanced material fabrication and characterization techniques will have a focused start in their graduate research and education or faster adaptation to nanotechnology-related industrial job positions. 
    more » « less
  2. Abstract Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today’s magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enable quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton–Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light–matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future. 
    more » « less
  3. Supported by the U.S. National Science Foundation a coherent educational program at the University of Rochester (UR) in nanoscience and nanoengineering, based on the Institute of Optics and Intergrated Nanosystems Center resources was created. The main achievements of this program are (1) developing curriculum and offering the Certificate for Nanoscience and Nanoengineering program (15 students were awarded the Certificate and approximately 10 other students are working in this direction), (2) creating a reproducible model of collaboration in nanotechnology between a university with state-of-the-art, expensive experimental facilities, and a nearby, two-year community college (CC) with participation of a local Monroe Community College (MCC). 52 MCC students carried out two labs at the UR on the atomic force microscopy and a photolithography at a clean room; (3) developing reproducible hand-on experiments on nanophotonics (“mini-labs”), learning materials and pedagogical methods to educate students with diverse backgrounds, including freshmen and non-STEM-major CC students. These minilabs on nanophotonics were also introduced in some Institute of Optics classes. For the Certificate program UR students must take three courses: Nanometrology Laboratory (a new course) and two other selective courses from the list of several. Students also should carry out a one-semester research or a design project in the field of nanoscience and nanoengineering. 
    more » « less
  4. Scanning probe-based microscopes (SPMs) are widely used in biology, chemistry, materials science, and physics to image and manipulate matter on the nanoscale. Unfortunately, high school and university departments lack expensive SPM tools and materials microscopy activities to educate a large number of students in this vital SPM imaging technique. As a result, students face challenges participating in and contributing value to the nanotechnology revolution driving modern scientific innovations. Here we demonstrate an affordable scanning laser-based imaging system (approximately $400, excluding the computer) to introduce students to the point-by-point image formation process underlying SPM methods. In this laboratory activity, students learn how to construct and optimize images of a working solar panel using a laser beam-induced current (LBIC) imaging system. We envision undergraduate and graduate students should be able to use this LBIC system for independent solar energy research projects as well as apply fundamental knowledge and measurement skills to understand other SPM techniques. 
    more » « less
  5. null (Ed.)
    Ammonia holds great promise as a carbon-neutral liquid fuel for storing intermittent renewable energy sources and power generation due to its high energy density and hydrogen content. Photo-Electrochemical Ammonia Synthesis: Nanocatalyst Discovery, Reactor Design, and Advanced Spectroscopy covers the synthesis of novel hybrid plasmonic nanomaterials and their application in photo-electrochemical systems to convert low energy molecules to high value-added molecules and looks specifically at photo-electrochemical nitrogen reduction reaction (NRR) for ammonia synthesis as an attractive alternative to the long-lasting thermochemical process. - Provides an integrated scientific framework, combining materials chemistry, photo-electrochemistry, and spectroscopy to overcome the challenges associated with renewable energy storage and transport - Reviews materials chemistry for the synthesis of a range of heterogeneous (photo) electrocatalysts including plasmonic and hybrid plasmonic-semiconductor nanostructures for selective and efficient conversion of N2 to NH3 - Covers novel reactor design to study the redox processes in the photo-electrochemical energy conversion system and to benchmark nanocatalysts’ selectivity and activity toward NRR - Discusses the use of advanced spectroscopic techniques to probe the reaction mechanism for ammonia synthesis - Offers techno-economic analysis and presents performance targets for the scale-up and commercialization of electrochemical ammonia synthesis This book is of value to researchers, advanced students, and industry professionals working in sustainable energy storage and conversion across the disciplines of Chemical Engineering, Mechanical Engineering, Materials Science and Engineering, Environmental Engineering, and related areas. 
    more » « less